Mechanisms of Spontaneous Mutagenesis: Implications for Spontaneous Carcinogenesis

  • Kendric C. Smith
  • Neil J. Sargentini
Part of the NATO ASI Series book series (NSSA, volume 124)


Spontaneous mutations have been defined as mutations that arise by mechanisms that have yet to be identified. While we will discuss the major hypotheses for spontaneous mutagenesis, our main objective is to discuss the roles of DNA damage (especially that caused by normal metabolic reactions) and of DNA repair genes in spontaneous mutagenesis, and the possible relevance of this information to our understanding of spontaneous carcinogenesis.


Cold Spring Harbor Spontaneous Mutation Xeroderma Pigmentosum Spontaneous Mutation Rate Spontaneous Mutagenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Sargentini and K. C. Smith, Spontaneous mutagenesis: The roles of DNA repair, replication, and recombination, Mechanisms Res. 154:1–27 (1985).Google Scholar
  2. 2.
    R. C. von Borstel, On the origin of spontaneous mutations, Japan J. Genet. (Suppl. 1) 44:102–105 (1969).Google Scholar
  3. 3.
    S. Kondo, H. Ichikawa, K. Iwo, and T. Kato, Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities, Genetics 66:187–217 (1970).PubMedGoogle Scholar
  4. 4.
    S. Kondo, Evidence that mutations are induced by errors in repair and replication, Genetics. Suppl. 73:109–122 (1973).Google Scholar
  5. 5.
    E. C. Cox, Bacterial mutator genes and the control of spontaneous mutation, Annu. Rev. Genet. 10:135–156 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    L. A. Loeb and T. A. Kunkel, Fidelity of DNA synthesis, Annu. Rev. Biochem. 51:429–457 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    C. W. Lawrence, Mutagenesis in Saccharomyces cerevisiae, Adv. Genet. 21:173–254 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    J. W. Drake, B. W. Glickman, and L. S. Ripley, Updating the theory of mutation, Amer. Scientist 71:621–630 (1983).Google Scholar
  9. 9.
    P. E. Hartman, Z. Hartman, R. C. Stahl, and B. N. Ames, Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella, Adv. Genet. 16:1–34 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    J. D. Watson and F. H. C. Crick, The structure of DNA, Cold Spring Harbor Symp. Quant. Biol. 18:123–131 (1953).PubMedCrossRefGoogle Scholar
  11. 11.
    M. D. Topal and J. R. Fresco, Complementary base pairing and the origin of substitution mutations, Nature 263:285–289 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    B. K. Duncan and J. H. Miller, Mutagenic deamination of cytosine residues in DNA, Nature 287:560–561 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    B. A. Kunz, Genetic effects of deoxyribonucleotide pool imbalances, Environ. Mutagenesis 4:695–725 (1982).CrossRefGoogle Scholar
  14. 14.
    G. G. Hillebrahd and K. L. Beattie, Template-dependent variation in the relative fidelity of DNA polymerase I of Escherichia coli in the presence of Mg2+ versus Mn2+, Nucleic Acids Res. 12:3173–3183 (1984).CrossRefGoogle Scholar
  15. 15.
    J. E. Patten, A. G. So, and K. M. Downey, Effect of base-pair stability of nearest-neighbor nucleotides on the fidelity of deoxyribonucleic acid synthesis, Biochemistry 23:1612–1618 (1984).CrossRefGoogle Scholar
  16. 16.
    G. Streisinger, Y. Okada, J. Emrich, J. Newton, A. Tsugita, E. Terzaghi, and M. Inouye, Frameshift mutations and the genetic code, Cold Spring Harbor Symp. Quant. Biol. 31:77–84 (1966).PubMedCrossRefGoogle Scholar
  17. 17.
    L. S. Ripley, Model for the participation of quasi-palindromic DNA sequences in frameshift mutation, Proc. Natl. Acad. Sci. USA 79:4128–4132 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    L. S. Ripley and B. W. Glickman, Unique self-complementarity of palindromic sequences provides DNA structural intermediates for mutation, Cold Spring Harbor Symp. Quant. Biol. 47:851–861 (1982).CrossRefGoogle Scholar
  19. 19.
    E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev. 40:869–907 (1976).PubMedGoogle Scholar
  20. 20.
    J. Wildenberg and M. Meselson, Mismatch repair in heteroduplex DNA, Proc. Natl. Acad. Sci. USA 72:2202–2206 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Mohn and F. E. Wurgler, Mutator genes in different species, Humangenetik 16:49–58 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    J. F. Speyer, J. D. Karam, and A. B. Lenny, On the role of DNA polymerase in base selection, Cold Spring Harbor Symp. Quant. Biol. 31:693–697 (1966).PubMedCrossRefGoogle Scholar
  23. 23.
    Z. W. Hall and I. R. Lehman, An in vitro transversion by a mutationally altered T4-induced DNA polymerase, J. Mol. Biol. 36:321–333 (1968).PubMedCrossRefGoogle Scholar
  24. 24.
    J. W. Drake and E. F. Allen, Antimutagenic DNA polymerases of bacteriophage T4, Cold Spring Harbor Symp. Quant. Biol. 33:339–344 (1968).PubMedCrossRefGoogle Scholar
  25. 25.
    J. W. Drake, E. F. Allen, S. A. Forsberg, R. Preparata, and E. O. Greening, Spontaneous mutation. Genetic control of mutation rates in bacteriophage T4, Nature 221:1128–1132 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    N. Muzyczka, R. L. Poland, and M. J. Bessman, Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4, J. Biol. Chem. 247:7116–7122 (1972).PubMedGoogle Scholar
  27. 27.
    G. C. Walker, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol. Rev. 48:60–93 (1984).PubMedGoogle Scholar
  28. 28.
    D. W. Mount, A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways. Proc. Natl. Acad. Sci. USA 74:300–304 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    E. M. Witkin, Thermal enhancement of ultraviolet mutability in a dnaB uvrA derivative of Escherichia coli B/r: Evidence for inducible error-prone repair, in: “Molecular Mechanisms for Repair of DNA, Part A,” P. C. Hanawalt and R. B. Setlow, eds., Plenum, New York (1975), pp. 369–378.CrossRefGoogle Scholar
  30. 30.
    J. R. Geiger and J. F. Speyer, A conditional antimutator in E. coli, Mol. Gen. Genet. 153:87–97 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    H. A. Erlich and E. C. Cox, Interaction of an Escherichia coli mutator gene with a deoxyribonucleotide effector, Mol. Gen. Genet. 178:703–708 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    E. M. Witkin, Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B/r: Evidence that ultraviolet mutagenesis depends upon an inducible function, Proc. Natl. Acad. Sci. USA 71:1930–1934 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    B. W. Glickman and M. Radman, Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction, Proc. Natl. Acad. Sci. USA 77:1063–1067 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Meuth, N. L’Heureux-Huard, and M. Trudel, Characterization of a mutator gene in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. USA 76:6505–6509 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    G. Weinberg, B. Ullman, and D. W. Martin, Jr., Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools, Proc. Natl. Acad. Sci. USA 78:2447–2451 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    G. E. Magni, The origin of spontaneous mutations during meiosis, Proc. Natl. Acad. Sci. USA 50:975–980 (1963).PubMedCrossRefGoogle Scholar
  37. 37.
    I. Machida and S. Nakai, Induction of spontaneous and UV-induced mutations during commitment to meiosis in Saccharomyces cerevisiae, Mutation Res. 73:59–68 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    D. H. Maloney and S. Fogel, Mitotic recombination in yeast: Isolation and characterization of mutants with enhanced spontaneous mitotic gene conversion rates, Genetics 94:825:839 (1980).PubMedGoogle Scholar
  39. 39.
    A. Sancar and W. D. Rupp, A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region, Cell 33:249–260 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    E. M. Witkin, Radiation-induced mutations and their repair, Science 152:1345–1353 (1966).PubMedCrossRefGoogle Scholar
  41. 41.
    M. H. L. Green, M. A. Rothwell, and B. A. Bridges, Mutation to prototrophy in Escherichia coli K-12: Effect of broth on UV-induced mutation in strain AB1157 and four excision-deficient mutants, Mutation Res. 16:225–234 (1972).PubMedCrossRefGoogle Scholar
  42. 42.
    E. M. Witkin, Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light, Brookhaven Symp. Biol. 20:17–55 (1967).Google Scholar
  43. 43.
    E. M. Witkin, From Gainesville to Toulouse: The evolution of a model, Biochimie 64:549–555 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    N. J. Sargentini and K. C. Smith, Much of spontaneous mutagenesis in Escherichia coli is due to error-prone DNA repair: Implications for spontaneous carcinogenesis, Carcinogenesis 9:863–872 (1981).CrossRefGoogle Scholar
  45. 45.
    T. Kato, R. H. Rothman, and A. J. Clark, Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV irradiation, Genetics 87:1–18 (1977).PubMedGoogle Scholar
  46. 46.
    R. H. Haynes and B. A. Kunz, DNA repair and mutagenesis in yeast, in: “Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance,” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1981), pp. 371–414.Google Scholar
  47. 47.
    P. K. Liu, C. Chang, and J. E. Trosko, Association of mutator activity with UV sensitivity in an aphidicolin-resistant mutant of Chinese hamster V79 cells, Mutation Res. 106:317–332 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    P. K. Liu, C. Chang, J. E. Trosko, D. K. Dube, G. M. Martin, and L. A. Loeb, Mammalian mutator mutant with an aphidicolin-resistant DNA polymerase a, Proc. Natl. Acad. Sci. USA 80:797–801 (1983).PubMedCrossRefGoogle Scholar
  49. 49.
    P. K. Liu, J. E. Trosko, and C. Chang, Hypermutability of a UV-sensitive aphidicolin-resistant mutant of Chinese hamster fibroblasts, Mutation Res. 106:333–345 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    E. C. Friedberg, U. K. Ehmann, and J. J. Williams, Human diseases associated with defective DNA repair, Adv. Radiat. Biol. 8:85–174 (1979).Google Scholar
  51. 51.
    J. McCann, N. E. Spingarn, J. Kobori, and B. N. Ames, Detection of carcinogens as mutagens: Bacterial tester strains with R factor Plasmids, Proc. Natl. Acad. Sci. USA 72:979–983 (1975).PubMedCrossRefGoogle Scholar
  52. 52.
    K. H. Kraemer, M. M. Lee, and J. Scotto, DNA repair protects against cutaneous and internal neoplasia: Evidence from xeroderma pigmentosum, Carcinogenesis 5:511–514 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    D. Savva, Spontaneous mutation rates in continuous cultures: The effect of some environmental factors, Microbios 33:81–92 (1982).PubMedGoogle Scholar
  54. 54.
    C. H. Clarke and D. M. Shankel, Antimutagenesis in microbial systems, Bacteriol. Rev. 39:33–53 (1975).PubMedGoogle Scholar
  55. 55.
    R. B. Webb, Lethal and mutagenic effects of near-ultraviolet radiation, Photochem. Photobiol. Rev. 2:169–261 (1977).CrossRefGoogle Scholar
  56. 56.
    R. B. Webb and J. Lorenz, Toxicity of irradiated medium for repair-deficient strains of Escherichia coli, J. Bacteriol. 112:649–652 (1972).PubMedGoogle Scholar
  57. 57.
    M. Morimyo, Anaerobic incubation enhances the colony formation of a polA recB strain of Escherichia coli K-12, J. Bacteriol. 152:208–214 (1952).Google Scholar
  58. 58.
    M. Kelley and J. M. Baden, Oxygen mutagenicity, Mutation Res. 77:185–188 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    H. Joenje, F. Arwert, A. W. Eriksson, H. de Koning, and A. B. Oostra, Oxygen-dependence of chromosomal aberrations in Fanconi’ s anaemia, Nature 290:142–143 (1981).PubMedCrossRefGoogle Scholar
  60. 60.
    J. R. Totter, Spontaneous cancer and its possible relationship to oxygen metabolism, Proc. Natl. Acad. Sci. USA 77:1763–1767 (1980).PubMedCrossRefGoogle Scholar
  61. 61.
    B. N. Ames, Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases, Science 221:1256–1264 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    R. Y.-H. Wang, K. C. Kuo, C. W. Gehrke, L.-H. Huang, and M. Ehrlich, Heat-and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA, Biochim. Biophys. Acta 697:371–377 (1982).PubMedCrossRefGoogle Scholar
  63. 63.
    T. Lindahl and B. Nyberg, Rate of depurination of native deoxyribonucleic acid, Biochemistry 11:3610–3618 (1972).PubMedCrossRefGoogle Scholar
  64. 64.
    T. Lindahl, DNA repair enzymes, Annu. Rev. Biochem. 51:61–87 (1982).PubMedCrossRefGoogle Scholar
  65. 65.
    D. Sagher and B. Strauss, Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: Uniqueness of adenine nucleotides, Biochemistry 22:4518–4526 (1983).PubMedCrossRefGoogle Scholar
  66. 66.
    R. M. Schaaper, T. A. Kunkel, and L. A. Loeb, Infidelity of DNA synthesis associated with bypass of apurinic sites, Proc. Natl. Acad. Sci. USA 80:487–491 (1983).PubMedCrossRefGoogle Scholar
  67. 67.
    N. J. Sargentini and K. C. Smith, Mutagenesis by normal metabolites in Escherichia coli: Phenylalanine mutagenesis is dependent on error-prone DNA repair, Mutation Res. (1986) in press.Google Scholar
  68. 68.
    H. Glatt, M. Protic-Sabljic, and F. Oesch, Mutagenicity of glutathione and cysteine in the Ames test, Science 220:961–963 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    G. Cilento, Photochemistry in the dark, Photochem. Photobiol. Rev. 5:199–228 (1980).CrossRefGoogle Scholar
  70. 70.
    I. Emerit and P. Cerutti, Clastogenic activity from Bloom syndrome fibroblast cultures, Proc. Natl. Acad. Sci. USA 78:1868–1872 (1981).PubMedCrossRefGoogle Scholar
  71. 71.
    R. S. K. Chaganti, S. Schonberg, and J. German, A manyfold increase in sister chromatid exchanges in Bloom’ s syndrome lymphocytes, Proc. Natl. Acad. Sci. USA 71:4508–4512 (1974).PubMedCrossRefGoogle Scholar
  72. 72.
    S. T. Warren, R. A. Schultz, C. Chang, M. H. Wade, and J. E. Trosko, Elevated spontaneous mutation rate in Bloom syndrome fibroblasts, Proc. Natl. Acad. Sci. USA 78:3133–3137 (1981).PubMedCrossRefGoogle Scholar
  73. 73.
    C. D. Lytle, R. E. Tarone, S. F. Barrett, J. D. Wirtschafter, J. Dupuy, and J. H. Robbins, Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina, Photochem. Photobiol. 37:503–508 (1983).PubMedCrossRefGoogle Scholar
  74. 74.
    R. A. Weinberg, A molecular basis of cancer, Scientific American 249:126–142 (1983).PubMedCrossRefGoogle Scholar
  75. 75.
    E. Santos, E. P. Reddy, S. Pulciani, R. J. Feldmann, and M. Barbacid, Spontaneous activation of a human proto-oncogene, Proc. Natl. Acad. Sci. USA 80:4679–4683 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Kendric C. Smith
    • 1
  • Neil J. Sargentini
    • 1
  1. 1.Department of RadiologyStanford University School of MedicineStanfordUSA

Personalised recommendations