A Regulatory Sequence of Simian Virus 40 is Inactivated by UV-Induced Damage

  • T. C. Brown
  • P. A. Cerutti
Part of the NATO ASI Series book series (NSSA, volume 124)


Damage in the DNA of eurocaryotic cells can modulate gene expression by several independent mechanisms. Lesions can block RNA synthesis by posing obstacles to RNA polymerase II. In general, bulky lesions are effective (1, 2), if temporary (3), blocks to transcription while damage introduced by alkylating agents is less potent (4). Damage can also affect gene expression by altering the pattern of methylated cytosine residues in DNA, either by inhibiting the activity of eucaryotic maintenance methyl transferase (5) or because DNA synthesized during excision repair is incompletely methylated (6). The ability of damage to alter methylation patterns may lead to heritable changes in gene expression (7). Chromosomal proteins close to the sites of damage in DNA (8) may be modified by the addition of poly ADP-ribose (9). Such modification may change the conformation of the chromatin in a way that alters gene expression (10). Finally, damage may block protein-DNA interactions required for transcription by distorting the DNA sequences that ordinarily serve as protein binding sites (11–13).


Bulky Lesion Transcriptional Control Region SV40 Genome Alter Methylation Pattern Methylated Cytosine Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Saurbier and K. Hercules, Ann. Rev. Gen. 12:329–364 (1978).CrossRefGoogle Scholar
  2. 2.
    P. B. Hackett, H. E. Varmus, and J. M. Bishop, Virology 112:752–756 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    L. V. Mayne and A. R. Lehmann, Cancer Res. 42:1473–1478 (1982).PubMedGoogle Scholar
  4. 4.
    B. Singer and J. T. Kusmierek, Ann. Rev. Biochem. 52:665–693 (1982).Google Scholar
  5. 5.
    V. L. Wilson and P. A. Jones, Cell 32:239–246 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    M. B. Kastan, B. J. Gowans, and M. W. Lieberman, Cell 30:509–516 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Holliday, Br. J. Cancer 40:513–522 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Malik, M. Miwa, T. Sugimura, P. Thaves, and M. E. Smulson, Proc. Natl. Acad. Sci. USA 80:2554–2558 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Shall, in: “ADP-ribosylation Reactions,” O. Hayaishi and K. Ueda, Academic Press, New York (1982), pp. 478–520.Google Scholar
  10. 10.
    G. G. Poirier, G. de Murcia, J. Jongstra-Bilen, C. Niedergang, and P. Mandel, Proc. Natl. Acad. Sci. USA 79:3423–3427 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    U. Sienbenlist, R. B. Simpson, and W. Gilbert, Cell 20:269–281 (1980).CrossRefGoogle Scholar
  12. 12.
    M. Ptashne, A. Jeffrey, A. D. Johnson, R. Maurer, B. J. Meyer, C. O. Pabo, T. M. Roberts, and R. T. Sauer, Cell 19:1–11 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    J. E. Cleaver, J. Mol. Biol. 170:305–317 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    T. C. Brown and P. A. Cerutti, EMBO J. 5:197–203 (1986).PubMedGoogle Scholar
  15. 15.
    in: “DNA Tumor Viruses, 2nd Ed.,” J. Tooze, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1980), pp. 799-829.Google Scholar
  16. 16.
    C. Benoist and P. Chambon, Nature 290:310–315 (1981).CrossRefGoogle Scholar
  17. 17.
    D. J. Mathis and P. Chambon, Nature 290:304–310 (1981).CrossRefGoogle Scholar
  18. 18.
    M. Fromm and P. Berg, J. Mol. Appl. Gen. 1:457–481 (1982).Google Scholar
  19. 19.
    S. W. Hartzeil, B. J. Byrne, and K. N. Subramanian, Proc. Natl. Acad. Sci. USA 81:23–27 (1984).CrossRefGoogle Scholar
  20. 20.
    R. T. Hay and M. L. DeParaphilis, Cell 28:767–779 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    H. J. Niggli and P. A. Cerutti, Biochemistry 22:1390–1395 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    J. I. Williams and J. E. Cleaver, Biophysioal J. 22:265–279 (1978).CrossRefGoogle Scholar
  23. 23.
    P. J. Abrahams and A. J. Van der Eb, Mut. Res. 35:13–22 (1976).CrossRefGoogle Scholar
  24. 24.
    P. Tegtmeyer, J. Virol. 15:613–618 (1975).PubMedGoogle Scholar
  25. 25.
    R. M. Meyers, D. C. Rio, A. K. Robbins, and R. Tjian, Cell 25:373–384 (1981).CrossRefGoogle Scholar
  26. 26.
    D. J. Bergsma, D. M. Olive, S. W. Hartzell, and K. N. Subramanian, Proc. Natl. Acad. Sci. USA 79:381–385 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    F. Bourre and A. Sarasin, Nature 305:68–70 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    D. Di Maio and D. J. Nathans, J. Mol. Biol. 140:129–142 (1980).CrossRefGoogle Scholar
  29. 29.
    T. E. Shenk, J. Carbon, and P. Berg, J. Virol. 18:664–671 (1976).PubMedGoogle Scholar
  30. 30.
    A. Barkan and J. E. Merz, J. Virol. 37:730–737 (1980).Google Scholar
  31. 31.
    H. Van Heuverswyn and W. Fiers, Eur. J. Biochem. 100:51–60 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Karin, A. Haslinger, H. Holtgreve, R. I. Richards, P. Krauter, H. M. Westphal and M. Beato, Nature 308:513–519 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Renkowitz, G. Schutz, D. Von der Ahe, and M. Beato, Cell 37:503–510 (1984).CrossRefGoogle Scholar
  34. 34.
    T. F. Donahue, R. S. Daves, G. Lucchini, and G. R. Fink, Cell 36:89–98 (1983).CrossRefGoogle Scholar
  35. 35.
    L. Guarente, B. Lalonde, P. Gifford and E. Alani, Cell 36:503–511 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • T. C. Brown
    • 1
  • P. A. Cerutti
    • 1
  1. 1.Department of CarcinogenesisSwiss Institute for Experimental Cancer ResearchEpalinges/LausanneSwitzerland

Personalised recommendations