Conversion of Covalently Closed Circular DNA into Circular and Linear DNA by Ionizing Radiation in the Presence and Absence of DNA-binding or Intercalating Drugs

  • P. Ohneseit
  • W. Kohnlein
Part of the NATO ASI Series book series (NSSA, volume 124)


It is generally accepted that hydroxyl radicals produced by the action of ionizing radiation in dilute aqueous solutions are predominantly responsible for the induction of strand breaks in DNA. It is also known that Tris buffer and citrate buffer can act as OH-scavengers. Nevertheless, Tris is still used as a solvent for DNA in irradiation experiments, even very recently, as can be seen from the work of McCormack et al. and Belli, reported during this meeting. We therefore considered it appropriate to study the OH-scavenging capacity of different buffers by measuring the DNA strand break production after ionizing radiation, starting with Tris buffer and phosphate buffer. Furthermore, we wanted to know whether drugs, known to interact with the DNA molecule, affect the radiation induced degradation and whether there is any correlation to the binding properties. Such knowledge might be important for the formulation of safety standards.


Tris Buffer Strand Break Drug Molecule Scavenge Capacity Strand Breakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Achey, H. Z. Duryea, and G. S. Michaels, Rad. Res. 58:83 (1974).CrossRefGoogle Scholar
  2. 2.
    T. A. Beerman and I. H. Goldberg, Biochem. Biophys. Res. Commun. 59:1254 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Blok and H. Loman, Curr. Top. Radiat. Res. 34:468 (1973).Google Scholar
  4. 4.
    G. Cobreros, M. C. Lopez Zumel, and P. Usobiaga, Rad. Res. 92:255 (1982).CrossRefGoogle Scholar
  5. 5.
    A. Colman, M. J. Byers, S. B. Primrose, and A. Lyons, Eur. J. Biochem. 91:303 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    D. B. Clewell and D. R. Helinski, Proc. Nat. Acad. Sci. USA 62:1159 (1969).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Di Marco and F. Arcamone, Drug Res. 25:368 (1975).Google Scholar
  8. 8.
    V. N. Iyer and W. Szybalski, Proc. Nat. Acad. Sci. USA 50:355 (1963).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Jung, R. S. Lewis, and W. Kohnlein, Biochem. Biophys. Acta 608:147 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Kersten, H. Kersten and W. Szybalski, Biochemistry 5:236 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Kohnlein and O. Merwitz, in: “18th Annual Meeting European Society for Radiation Biology, Book of Abstracts,” 171 (1984).Google Scholar
  12. 12.
    J.-B. Le Pecq and C. Paoletti, J. Mol. Biol. 27:87 (1967).CrossRefGoogle Scholar
  13. 13.
    M. A. Napier, L. S. Kappen and I. H. Goldberg, Biochemistry 19:1767 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Nayak, M. Sirsi, and S. K. Podder, Biochim. Biophys. Acta 378:195 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    L. F. Povirk, W. Wubker, W. Kohnlein, and F. Hutchinson, Nuc. Acids Res. 4:3573 (1977).CrossRefGoogle Scholar
  16. 16.
    L. F. Povirk and I. H. Goldberg, Biochemistry 19:4773 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    K. L. Yielding, L. W. Blodgett, H. Sternglanz, and D. Gaudin, in: “Progress in Mol. & Subcell. Biol., Vol. 2,” F. E. Hahn et al., eds., Springer-Verlag, Berlin, Heidelberg, New York (1971), pp. 69–90.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. Ohneseit
    • 1
  • W. Kohnlein
    • 1
  1. 1.Institute for Radiation BiologyUniversity of MunsterGermany

Personalised recommendations