Chemical Inhibition of the Repair of DNA Single Strand Breaks Produced by X-irradiation or Hydrogen Peroxide in Cultured Mammalian Cells

  • O. Cantoni
  • F. Cattabeni
Part of the NATO ASI Series book series (NSSA, volume 124)


The effect of various metal compounds, formaldehyde and adriamycin on the rejoining of X-rays induced DNA single strand breaks was examined using the alkaline elution technique. of the compounds tested, Chromate, mercury (II) and formaldehyde decreased the ability of cells to rejoin DNA strand breaks. The inhibition of DNA repair could be demonstrated also using another system where strand breaks were produced by exposing cells for 1 hr. to 30 HM H2O2, at ice temperature.

NiCl2, CoCl2, Pb(C2H3O2)2 Cr(C2H3O2)3, CdCl2 and adriamycin were not effective in inhibiting strand break rejoining.

The possible biological significance of DNA repair inhibition is discussed.


Strand Break Chinese Hamster Ovary Cell Metal Compound Unirradiated Cell Repair Inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Waring, Ann. Rev. Biochem. 50:159 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    C. S. Downes, A. R. S. Collins, and R. T. Johnson, Mutat. Res. 112:75 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    R. M. Miller and D. N. Chinault, J. Biol. Chem. 257:10204 (1982).PubMedGoogle Scholar
  4. 4.
    K. W. Kohn, R. A. G. Ewig, L. C. Erickson, and L. A. Zwelling, in: “DNA Repair — A Laboratory Manual of Research Procedures,” E. Friedberg and P. C. Hanawalt, eds., Vol. 1, Part B (1981) pp. 378.Google Scholar
  5. 5.
    O. Cantoni and M. Costa, Molecular Pharmacol. 24:84 (1983).Google Scholar
  6. 6.
    O. Cantoni, D. Murray, and R. Meyn, Biochem. Biophys. Acta. In press.Google Scholar
  7. 7.
    M. P. Abbracchio, R. M. Evans, J. D. Heck, O. Cantoni, and M. Costa, Biol. trace El. Res. 4:289 (1982).CrossRefGoogle Scholar
  8. 8.
    O. Cantoni, P. Sestiei and F. Cattabeni, Bull. Environ. Cont. Tox. In Press.Google Scholar
  9. 9.
    R. C. Grafstrom, A. J. Fornace, H. Autrup, J. F. Lachner, and C. Harris, Science 220:216 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    U. Ringborg and B. Lambert, in: “DNA Repair Late Effects,” H. Altmann, H. Riklis, and H. Slor (1980), pp. 311.Google Scholar
  11. 11.
    R. Lewensohn and U. Ringborg, Cancer Letters 18:305 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Tanaka and S. Yoshida, Biochem. 87:911 (1980).Google Scholar
  13. 13.
    J. F. Ward, E. I. Joner, and W. F. Blakely, Cancer Res. 44:59 (1984).PubMedGoogle Scholar
  14. 14.
    H. E. Kann, K. W. Kohn, and J. M. Lyles, Cancer Res. 34:398 (1974).PubMedGoogle Scholar
  15. 15.
    L. A. Zwelling, D. Kerrigan, and Y. Pommier, Biochem. Biophys. Res. Comm. 104:897 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Gaudin, R. S. Gregg, and K. L. Yelding, Biochem. Res. Comm. 45:630 (1971).CrossRefGoogle Scholar
  17. 17.
    J. A. Swenberg, C. S. Barrow, C. J. Boreiko, H. Heck, R. J. Levine, K. T. Morgan, and T. B. Starr, Carcinogenesis 4:945 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    J. M. LaVelle and C. M. Witmer, Mutat. Res. 106:297 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • O. Cantoni
    • 1
  • F. Cattabeni
    • 1
  1. 1.Istituto di Farmacologia e FarmacognosiaUniversita degli Studi di UrbinoUrbinoItaly

Personalised recommendations