Advertisement

The Yield of Chromosomal Aberrations and its Correlation with Other Biological Endpoints

  • K. H. Chadwick
  • H. P. Leenhouts
Part of the NATO ASI Series book series (NSSA, volume 124)

Abstract

We have proposed in our preceding chapter that all radiation induced chromosomal aberrations arise from one DNA double strand break by a process of chromosomal repair. In this paper we consider the yield of chromosomal aberrations as a function of dose and consider the effect of different dose rates and types of radiation on the yield. We also show that if the DNA double strand break is proposed as the crucial lesion, then mathematical correlations between different endpoints can be predicted and are found experimentally. We discuss these correlations, their implications and the evidence which suggests that the crucial lesion really is the DNA double strand break.

Keywords

Dose Rate Strand Break Chromosomal Aberration Single Strand Break Repair Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. W. Barendsen, Int. J. Radiat. Biol. 36:49–63 (1979).CrossRefGoogle Scholar
  2. 2.
    M. Bauchinger, E. Schmid, and J. Dresp, Int. J. Radiat. Biol. 35:229–233, (1979).CrossRefGoogle Scholar
  3. 3.
    M. Bauchinger, E. Schmid, S. Streng, and J. Dresp, Radiat. Environ. Biophys. 22:225–230 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    K. H. Chadwick and H. P. Leenhouts, “The Molecular Theory of Radiation Biology,” Springer Verlag, Heidelberg (1981).CrossRefGoogle Scholar
  5. 5.
    J. D. Chapman, A. P. Reuvers, S. D. Doern, C. J. Gillespie, and D. L. Dugle, in: “Proc. 5th Microdosimetry Symposium,” J. Booz, H. G. Ebert, and B. G. R. Smith, eds. EUR 5452, CEC, Brussels (1976), pp. 775–793.Google Scholar
  6. 6.
    Ri Cox and W. K. Masson, Int. J. Radiat. Biol. 36:149–160 (1979).CrossRefGoogle Scholar
  7. 7.
    W. C. Dewey, S. C. Furman, and H. H. Miller, Radiat. Res. 43:561–581 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    W. C. Dewey, L. E. Stone, H. H. Miller, and R. E. Giblak, Radiat. Res. 47:672–688 (1971a).PubMedCrossRefGoogle Scholar
  9. 9.
    W. C. Dewey, H. H. Miller, and D. B. Leeper, Proc. Nat. Acad. Sci. USA 68:667–671 (1971b).PubMedCrossRefGoogle Scholar
  10. 10.
    W. C. Dewey, S. A. Sapareto, and D. A. Betten, Radiat. Res. 76:48–59 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Dikomey, Int. J. Radiat. Biol. 41:603–614 (1982).CrossRefGoogle Scholar
  12. 12.
    D. L. Dugle, C. J. Gillespie, and J. D. Chapman, Proc. Nat. Acad. Sci. USA 73:809–812 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    A. A. Edwards, R. J. Purrott, J. S. Prosser, and D. C. Lloyd, Int. J. Radiat. Biol. 38:83–91 (1980a).CrossRefGoogle Scholar
  14. 14.
    A. A. Edward, D. C. Lloyd, and R. J. Purrott, in: “Proc. 7th Microdosimetry Symposium,” J. Booz, H. G. Ebert, and H. D. Hartfiel, eds., EUR 7147, CEC, Brussels (1980), pp. 1263–1274.Google Scholar
  15. 15.
    D. T. Goodhead, R. J. Munson, J. Thacker, and R. Cox, Int. J. Radiat. Biol. 37:135–167 (1980).CrossRefGoogle Scholar
  16. 16.
    D. T. Goodhead, J. Thacker, and R. Cox, Int. J. Radiat. Biol. 36:101–114 (1979).CrossRefGoogle Scholar
  17. 17.
    G. Iliakis, Mutat. Res. 126:215–225 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    A. M. Kellerer and H. H. Rossi, Curr. Top. Radiat. Res. Q. 8:85–158 (1972).Google Scholar
  19. 19.
    D. E. Lea, “Actions of Radiations on Living Cells,” University Press, Cambridge (1946).Google Scholar
  20. 20.
    D. E. Lea and D. G. Catcheside, J. Genet. 44:216–245 (1942).CrossRefGoogle Scholar
  21. 21.
    H. P. Leenhouts and K. H. Chadwick, in: “Proc. 5th Microdosimetry Symposium,” J. Booz, H. G. Ebert, and B. G. R. Smith, eds., EUR 5452, CEC, Brussels (1976), pp. 289–308.Google Scholar
  22. 22.
    D. C. Lloyd, R. J. Purrott, G. W. Dolphin, D. Bolton, A. A. Edwards, and M. J. Corp, Int. J. Radiat. Biol. 28:75–90 (1975).CrossRefGoogle Scholar
  23. 23.
    D. C. Lloyd, R. J. Purrott, G. W. Dolphin, and A. A. Edwards, Int. J. Radiat. Biol. 29:169–182 (1976).CrossRefGoogle Scholar
  24. 24.
    D. C. Lloyd, R. J. Purrott, E. J. Reeder, A. A. Edwards, and G. W. Dolphin, Int. J. Radiat. Biol. 34:177–186 (1978).CrossRefGoogle Scholar
  25. 25.
    D. C. Lloyd, A. A. Edwards, J. S. Prosser, and M. J. Corp, Radiat. Environ. Biophys. 23:179–190 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    R. J. Purrott, A. A. Edwards, D. C. Lloyd, and J. W. Stather, Int. J. Radiat. Biol. 38:277–284 (1980).CrossRefGoogle Scholar
  27. 27.
    B. S. Rao and L. E. Hopwood, Int. J. Radiat. Biol. 42:501–508 (1982).CrossRefGoogle Scholar
  28. 28.
    W. C. Roesch, in: “Proc. 3rd Symposium Neutron Dosimetry in Biology and Medicine,” G. Burger and H. G. Ebert, eds., CEC, Luxembourg (1982), pp. 1–27.Google Scholar
  29. 29.
    E. Schmid, M. Bauchinger, and W. Mergenthaler, Int. J. Radiat. Biol. 30:339–346 (1976).CrossRefGoogle Scholar
  30. 30.
    J. Thacker, A. Stretch, and M. A. Stephens, Mutat. Res. 42:313–326 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Thacker, A. Stretch, and M. A. Stephens, Int. J. Radiat. Biol. 36:137–148 (1979).CrossRefGoogle Scholar
  32. 32.
    J. Thacker, D. T. Goodhead, and R. E. Wilkinson, in: “Proc. 8th Microdosimetry Symposium,” J. Booz and H. G. Ebert, eds., EUR 8395, CEC, Brussels (1982), pp. 587–595.Google Scholar
  33. 33.
    R. P. Virsik and D. Harder, Radiat. Envirn. Biophys. 18:221–238 (1980a).CrossRefGoogle Scholar
  34. 34.
    R. P. Virsik and D. Harder, Radiat. Envirn. Biophys. 18:73–77 (1980b).CrossRefGoogle Scholar
  35. 35.
    R. B. Virsik, R. Blohm, K-P Hermann, and D. Harder, in “ Proc. 7th Microdosimetry Symposium,” J. Booz, H. G. Ebert, and H. D. Hartfiel, eds., EUR 7147, CEC, Brussels (1980), pp. 943–955.Google Scholar
  36. 36.
    K. F. Weibezahn, C. Sexauer, and T. Coquerelle, Int. J. Radiat. Biol. 38:365–371 (1980).CrossRefGoogle Scholar
  37. 37.
    J. Zoetelief and G. W. Barendsen, in: “Proc. 8th Miorodosimetry Symposium,” J. Booz, H. G. Ebert, and H. D. Hartfiel, eds., EUR 7147, CEC, Brussels (1980), pp. 883–898.Google Scholar
  38. 38.
    J. Zoetelief and G. W. Barendsen, Int. J. Radiat. Biol. 43:349–362 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • K. H. Chadwick
    • 1
    • 2
  • H. P. Leenhouts
    • 1
    • 2
  1. 1.National Institute for Public Health and Environmental HygieneBilthovenThe Netherlands
  2. 2.Association Euratom-ITALWageningenThe Netherlands

Personalised recommendations