DNA Damage and Chromosome Aberrations

  • K. H. Chadwick
  • H. P. Leenhouts
Part of the NATO ASI Series book series (NSSA, volume 124)


Recent work in Medical Cytogenetics has demonstrated not only the close association between specific chromosome alterations and specific forms of cancer (81, 22, 34), but has also shown that oncogenes can be found to be involved in these specific chromosome alterations (17, 25, 2, 15). The suspected role of oncogenes in cancer has been strengthened by the very exciting developments in molecular biology which have shown the close homology between some cellular oncogenes and some viral genes and have examined the activity of oncogenes in cell transformation studies (6, 20, 78). There are indications of increased oncogene activity in transformed cells (45, 37), of the presence of mutated oncogenes in transformed cells (49, 47, 65), of the association between the oncogene protein product and platelet derived growth factor (76, 19) and that the loss of controlling genes possibly leads to the increased activity of oncogenes (4, 35) in retinoblastoma and neuroblastoma. These malignancies which occur predominantly in children and are to some extent hereditary, have been used by Knudsen (30) to support his two mutation theory of cancer induction. Other evidence supporting the mutation “theory ” comes from the very close association between the mutagenic activity of certain chemical and physical agents and their known carcinogenic activity (38) and from the fact that medical syndromes associated with an increased susceptibility to cancer also are associated with decreased ability to repair DNA damage (63).


Chromosomal Aberration Double Strand Break Chromosome Aberration Exchange Theory Meiotic Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. E. Arrighi, P. P. Saunders, G. F. Saunders, T. C. Hsu, Experimentia 27:964–966 (1971).CrossRefGoogle Scholar
  2. 2.
    C. R. Bartram, A. de Klein, A. Hagemeijer, T. van Agthoven, A. Geurts van Kessel, D. Bootsma, G. Grosveld, M. A. Ferguson-Smith, T. Davies, M. Stone, N. Heisterkamp, J. R. Stephenson, and J, Groffen, Nature 306:227–280 (1983).CrossRefGoogle Scholar
  3. 3.
    M. A. Bender, H. G. Griggs, and J. S. Bedford, Mutat. Res. 23:197–212 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    W. F. Benedict, A. L. Murphree, A. Banerjee, C. A. Spina, M. C. Sparkes, and R. S. Sparkes, Science, 219:973–975 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Berger, Nouv. Presse Med. 46:3121 (1973).Google Scholar
  6. 6.
    J. M. Bishop, Sci. Am. 246(3):69–78 (1982).CrossRefGoogle Scholar
  7. 7.
    R. J. Britten and D. E. Konne, Science 161:529–540 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    K. E. Buckton, Int. J. Radiat. Biol. 29:475–488 (1976).CrossRefGoogle Scholar
  9. 9.
    T. Caspersson, L. Zech, C. Johansson, and E. J. Modest, Chromosoma 30:215–227 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Caspersson, V. Hagland, B. Lindell, and L. Zech, Exp. Cell Res. 75:541–543 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    D. G. Catcheside, D. E. Lea, and J. M. Thoday, J. Genet. 47:113–136 (1946).PubMedCrossRefGoogle Scholar
  12. 12.
    K. H. Chadwick and H. P. Leenhouts, in: “The Molecular Theory of Radiation Biology,” Springer Verlag, Heidelberg (1981).CrossRefGoogle Scholar
  13. 13.
    K. H. Chadwick and H. P. Leenhouts, Int. J. Radiat. Biol. 33:517–529 (1978).CrossRefGoogle Scholar
  14. 14.
    P. Cooke, M. Seabright, and M. Wheeler, Humangenetik 28:221–231 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Crews, R. Barth, L. Hood, J. Prehn, and K. Calame, Science 218:1319–1321 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    E. H. Davidson and R. J. Britten, Q. Rev. Biol. 48:565–613 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    A. de Klein, A. Geurts van Kessel, G. Grosveld, C. R. Bartram, A. Hagemeijer, D. Bootsma, N. K. Spurr, N. Heisterkamp, J. Groffen, and J. R. Stephenson, Nature 300:765–767 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    M. C. Dinauer and R. V. Pierre, Lancet II:971 (1973).CrossRefGoogle Scholar
  19. 19.
    R. F. Doolittle, M. W. Hunkapiller, L. E. Hood, S. G. Devare, K. C. Robbins, S. A. Aaronson, and H. N. Antoniades, Science 221:275–277 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    P. H. Duesberg, Nature 304:219–226 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    H. J. Evans and T. R. L. Bigger, Genetics 46:227–289 (1961).Google Scholar
  22. 22.
    D. Forman and J. Rowley, Nature 300:403–404 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    D. T. Goodhead, R. P. Virsik, D. Harder, J. Thacker, R. Cox, and R. Blohm, in: “Proc. 7th Microdosimetry Symposium,” J. Booz, H. G. Ebert, H. D. Hartfiel, eds., EUR 7147, CEC, Brussels (1980), pp. 1275–1285.Google Scholar
  24. 24.
    F. T. Hatch, A. J. Bodner, J. A. Mazrimas, and D. H. Moore, Chromosoma 58:155–168 (1976).PubMedCrossRefGoogle Scholar
  25. 26.
    M. Holmberg and J. Jonasson, Hereditas 74:57–67 (1973).PubMedCrossRefGoogle Scholar
  26. 27.
    R. Kavenoff and B. H. Zimm, Chromosoma 41:1–27 (1973).PubMedCrossRefGoogle Scholar
  27. 28.
    B. A. Kihlman, H. C. Andersson, and A. T. Natarajan, in: “Chromosomes Today 6,” A. de la Chapelle and M. Sorsa, eds., Elsevier, Amsterdam (1977), pp. 287–296.Google Scholar
  28. 29.
    B. A. Kihlman, A. T. Natarajan, and H. C. Andersson, Mutat. Res. 52:181–198 (1978).CrossRefGoogle Scholar
  29. 30.
    A. G. Knudson, L. C. Strong, and D. E. Anderson, in: “Prog. in Med. Genet.,” A. G. Steinberg and A. G. Beam, eds., Grane and Stratton, New York (1973), pp. 113–158.Google Scholar
  30. 31.
    R. D. Kornberg, Science 184:868–871 (1974).PubMedCrossRefGoogle Scholar
  31. 32.
    M. Kucerova and Z. Polivkova, Mutat. Res. 34:279–290 (1976).PubMedCrossRefGoogle Scholar
  32. 33.
    D. E. Lea and D. G. Catcheside, J. Genet. 44:216–245 (1942).CrossRefGoogle Scholar
  33. 34.
    M. M. Lebeau and J. D. Rowley, Nature 308:607–608 (1984).PubMedCrossRefGoogle Scholar
  34. 35.
    W-H. Lee, A. L. Murphree and W. F. Benedict, Nature 309:458–460 (1984).PubMedCrossRefGoogle Scholar
  35. 36.
    H. P. Leenhouts and K. H. Chadwick, Theor. App. Genet. 44:167–172 (1974).Google Scholar
  36. 37.
    C. D. Little, M. M. Nan, D. N. Carney, A. F. Gazdar and J. F. Minna, Nature 306:194–196 (1983).PubMedCrossRefGoogle Scholar
  37. 38.
    J. McCann and B. N. Ames, Proc. Natl. Acad. Sci. USA 73:950–954 (1976).PubMedCrossRefGoogle Scholar
  38. 39.
    A. T. Natarajan and G. Ahnstrom, Chromosoma 28:48–61 (1969).PubMedCrossRefGoogle Scholar
  39. 40.
    A. T. Natarajan and G. Ahnstrom, Chromosoma 30:250–257 (1970).PubMedCrossRefGoogle Scholar
  40. 41.
    A. T. Natarajan and G. Obe, Mutat. Res. 52:137–149 (1978).PubMedCrossRefGoogle Scholar
  41. 42.
    A. T. Natarajan, G. Obe, A. A. van Zealand, F. Palitti, M. Meijers, and E. A. M. Verdegaal-Immerzeel, Mutat. Res. 69:293–305 (1980a).PubMedCrossRefGoogle Scholar
  42. 43.
    A. T. Natarajan, B. A. Kihlman, and G. Obe, Mutat. Res. 73:307–317 (1980b).PubMedCrossRefGoogle Scholar
  43. 44.
    A. T. Natarajan and T. S. B. Zwanenburg, Mutat. Res. 95:1–6 (1982).PubMedCrossRefGoogle Scholar
  44. 45.
    P. Nowell, J. Finan, R. Dalla Favera, R. C. Gallo, A. ar-Rushdi, H. Romanczuk, J. R. Seiden, B. S. Emanuel, G. Rovera and C. M. Croce, Nature 306:494–497 (1983).PubMedCrossRefGoogle Scholar
  45. 46.
    P. Petit and C. Cauchie, Lancet 11:94 (1973).CrossRefGoogle Scholar
  46. 47.
    T. H. Rabbitts, P. H. Hamlyn and R. Baer, Nature 306:760–765 (1983).PubMedCrossRefGoogle Scholar
  47. 48.
    T. Raposa, A. T. Natarajan, and I. Granberg, J. Natl. Cancer Inst. 52:1935–1938 (1974).PubMedGoogle Scholar
  48. 49.
    E. P. Reddy, R. K. Reynolds, E. Santos, and M. Barbacid, Nature 300:149–152 (1982).PubMedCrossRefGoogle Scholar
  49. 50.
    M. A. Resnick, J. Theor. Biol. 59:97–106 (1976).PubMedCrossRefGoogle Scholar
  50. 51.
    S. H. Reveil, in “Proc. Radiobiol. Symp. Liege,” Butterworth, London (1955) pp. 243–253.Google Scholar
  51. 52.
    S. H. Reveil, Proc. R. Soc. Ser. B. (London) 150:563–589 (1959).CrossRefGoogle Scholar
  52. 53.
    S. H. Reveil, in: “Radiation Induced Chromosome Aberrations,” S. Wolff, ed., Columbia University Press, New York (1963) pp. 42–72.Google Scholar
  53. 54.
    S. H. Revell, Mutat. Res. 3:34–53 (1966).PubMedCrossRefGoogle Scholar
  54. 55.
    J. D. Rowley, Nature 243:290–293 (1973a).PubMedCrossRefGoogle Scholar
  55. 56.
    J. D. Rowley, Ann. Genet. 16:109–112 (1973b).PubMedGoogle Scholar
  56. 57.
    C. San Roman and M. Bobrow, Mutat. Res. 18:325–332 (1973).CrossRefGoogle Scholar
  57. 58.
    J. R. K. Savage, Radiat. Bot. 15:87–140 (1975).CrossRefGoogle Scholar
  58. 59.
    K. Sax, Proc. Natl. Acad. Sci. USA 25:225–233 (1939).PubMedCrossRefGoogle Scholar
  59. 60.
    K. Sax, Genetics 25:41–68 (1940).PubMedGoogle Scholar
  60. 61.
    K. Sax, Cold Spring Harbor Symp. 9:93–103 (1941).CrossRefGoogle Scholar
  61. 62.
    M. Seabright, Chromosoma 40:333–346 (1973).PubMedCrossRefGoogle Scholar
  62. 63.
    R. B. Setlow, Nature 271:713–717 (1978).PubMedCrossRefGoogle Scholar
  63. 64.
    N. Sugawara and J. W. Szostak, Proc. Natl. Acad. Sci. USA 80:5675–5679 (1983).PubMedCrossRefGoogle Scholar
  64. 65.
    S. Sukumar, V. Notario, D. Martin-Zanca and M. Barbacid, Nature 306:658–661 (1983).PubMedCrossRefGoogle Scholar
  65. 66.
    J. W. Szostak, T. L. Orr-Weaver, R. J. Rothstein and F. W. Stahl, Cell 33:25–35 (1983).PubMedCrossRefGoogle Scholar
  66. 67.
    J. Thacker, R. Cox, and D. T. Goodhead, Int. J. Radiat. Biol. 38:469–472 (1980).CrossRefGoogle Scholar
  67. 68.
    J. Thacker, D. T. Goodhead and R. E. Wilkinson, in: “Proc. 8th Microdosimetry Symp.,” J. Booz and H. G. Ebert, eds., EUR 8395, CEC, Brussels (1982), pp. 587–595.Google Scholar
  68. 69.
    J. M. Thoday, J. Genet. 43:189 (1942).CrossRefGoogle Scholar
  69. 70.
    J. M. Thoday, Brit. J. Radiol. 24:572–576, 622-628 (1951).PubMedCrossRefGoogle Scholar
  70. 71.
    C. A. Thomas, B. A. Hamkalo, D. N. Misra, and C. S. Lee, J. Mol. Biol. 51:621–632 (1970).PubMedCrossRefGoogle Scholar
  71. 72.
    H. Van der Berghe, J. P. Fryns, and F. Devos, Humangenetick 20:163–166 (1973).CrossRefGoogle Scholar
  72. 73.
    H. Van Steenis, R. Tuscany, and B. Leigh, Mutat. Res. 23:223–228 (1974).PubMedCrossRefGoogle Scholar
  73. 74.
    R. P. Virsik, R. Blohm, K. P. Hermann and D. Harder, in: “Proc. 7th Microdosimetry Symp.,” J. Booz, H. G. Ebert, and H. D. Hartfiel, eds., EUR 7147, CEC, Brussels (1980) pp. 943–955.Google Scholar
  74. 75.
    R. P. Virsik, D. T. Goodhead, R. Cox, J. Thacker, C. Schafer, and D. Harder, Int. J. Radiat. Biol. 38:545–557 (1980).CrossRefGoogle Scholar
  75. 76.
    M. D. Waterfield, G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wasteson, B. Westermark, C-H. Heldin, J. S. Huang, and T. F. Denel, Nature 304:35–39 (1983).PubMedCrossRefGoogle Scholar
  76. 77.
    J. D. Watson and F. H. C. Crick, Nature 171:737–738 (1953).PubMedCrossRefGoogle Scholar
  77. 78.
    R. W. Weinberg, Sci. Amer. 249(5):102–116 (1983).CrossRefGoogle Scholar
  78. 79.
    J. Whang-Peng, T. A. Knudsen, and E. C. Lee, J. Natl. Cancer Inst., 51:2009–2012 (1973).PubMedGoogle Scholar
  79. 80.
    J. S. Yoon and R. H. Richardson, Genetics 88:305–316 (1978).PubMedGoogle Scholar
  80. 81.
    J. J. Yunis, Science 221:227–236 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • K. H. Chadwick
    • 1
    • 2
  • H. P. Leenhouts
    • 1
    • 2
  1. 1.National Institute for Public Health and Environmental HygieneBilthovenThe Netherlands
  2. 2.Association Euratom-ITAL WageningenThe Netherlands

Personalised recommendations