The Induction and Repair of Ultraviolet Light Damage in Mammalian Cells

  • A. M. Rauth
Part of the NATO ASI Series book series (NSSA, volume 124)


Ultraviolet light (UV) has been extensively used as a damage inducing agent in mammalian cells in in vitro cell cultures. The wavelengths studied have been primarily in the range of 200-300 nm where deoxyribonucleic acid (DNA) absorbs most strongly. In the present article a review will be made of the major effects of UV in this wavelength range on such in vitro systems in terms of: (1) damage production; (2) cell survival and mutation; (3) the role of various repair processes in modifying the induced damage; and, finally, (4) the carcinogenic process. An attempt will be made to indicate to some degree where these effects of UV differ from those of ionizing radiation and to point out some unique features of mammalian cells compared to bacterial systems where the models for understanding UV effects have originated. Due to the breadth of the material covered, extensive reference has been made to review articles which summarize the original work. The references cited are in no way complete and only represent an introduction to the original literature. In particular, extensive use of the following reviews has been made (1-11).


Mammalian Cell Excision Repair Xeroderma Pigmentosum Chinese Hamster Cell Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Cleaver, DNA repair and its coupling to DNA replication in eukaryotic cells. Biochim. Biophys. Acta 516:489–516 (1978).PubMedGoogle Scholar
  2. 2.
    T. P. Coohill, Action spectra for mammalian cells in vitro, in: “Topics in Photomedicine,” K. C. Smith, ed., Plenum Press, New York and London (1984), pp. 1–37.Google Scholar
  3. 3.
    C. Friedberg, U. K. Ehmann, and J. I. Williams, Human diseases associated with defective DNA repair, Adv. Radiat. Biol. 8:85–174 (1979).Google Scholar
  4. 4.
    J. D. Hall and D. W. Mount, Mechanisms of DNA replication and mutagenesis in ultraviolet-irradiated bacteria and mammalian cells, Prog. Nucleic Acid Res. 25:53–126 (1981).CrossRefGoogle Scholar
  5. 5.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells, Ann. Rev. Biochem. 48:783–836 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    R. R. Hewitt and R. E. Meyn, Applicability of bacterial models of DNA repair and recovery to UV-irradiated mammalian cells, Adv. Radiat. Biol. 7:153–179 (1978).Google Scholar
  7. 7.
    B. A. Kihlman, “Caffeine and Chromosomes,” Elsevier Scientific Publishing Co., Amsterdam, New York, Oxford (1977).Google Scholar
  8. 8.
    M. C. Paterson, N. E. Gentner, M. V. Middlestadt, and M. Weinfeld, Cancer predisposition, carcinogen hypersensitivity, and aberrant DNA metabolism, J. Cell. Physiol. Suppl. 3:45–62 (1984).CrossRefGoogle Scholar
  9. 9.
    T. Lindahl, DNA repair enzymes, Ann. Rev. Biochem. 51:61–87 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    R. B. Setlow, Repair deficient human disorders and cancer, Nature (London) 271:713–717 (1978).CrossRefGoogle Scholar
  11. 11.
    J. J. Roberts, The repair of DNA modified by cytotoxic, mutagenic, and carcinogenic chemicals, Adv. Radiat. Biol. 7:211–436 (1978).Google Scholar
  12. 12.
    A. M. Rauth and J. A. Simpson, The energy loss of electrons in solids. Radiat. Res. 22:643–661 (1964).CrossRefGoogle Scholar
  13. 13.
    M. Fielden, Initial chemical lesions, in: “Radiation Carcinogenesis and DNA Alterations,” F. J. Burns, A. C. Upton, and G. Silini, eds., Plenum Press, New York (1986). Submitted.Google Scholar
  14. 14.
    S. Y. Wang, “The Photochemistry and Photobiology of Nucleic Acids,” Academic Press, New York (1976).Google Scholar
  15. 15.
    A. J. Varghese, Photochemical addition of amino acids and related compounds to nucleic acid constituents, in: “Aging, Carcinogenesis, and Radiation Biology,” K. C. Smith, ed., Plenum Publishing Co., New York (1976), pp. 207–223.Google Scholar
  16. 16.
    A. J. Fornace and K. W. Kohn, DNA-protein cross-linking by ultraviolet radiation in normal human and xeroderma pigmentosum fibroblasts, Biochim. Biophys. Acta 435:95–103 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    A. M. Rauth, Effects of ultraviolet light on mammalian cells in culture, in: “Current Topics of Radiation Research, 6,” M. Ebert and A. Howard, eds., North-Holland Publishing Co., Amsterdam, London (1970), pp. 195–248.Google Scholar
  18. 18.
    J. Jagger, “Introduction to Research in Ultraviolet Photobiology,” Prentice-Hall, New Jersey (1967).Google Scholar
  19. 19.
    M. M. Elkind and G. F. Whitmore, “The Radiobiology of Cultured Mammalian Cells,” Gordon and Breach, New York (1967).Google Scholar
  20. 20.
    E. C. Friedberg and P. C. Hanawalt, “DNA Repair, A Laboratory Manual of Research Procedures, Volume 1,” Marcel Dekker Inc., New York and Basel (1981).Google Scholar
  21. 21.
    D. L. Steward and R. M. Humphrey, Induction of thymine dimers in synchronized populations of Chinese hamster cells, Nature (London) 212:248–300 (1966).CrossRefGoogle Scholar
  22. 22.
    J. E. Trosko, M. Kosschau, L. Covington, and E. H. Y. Chu, UV-induction of pyrimidine dimers during different phases of the cell cycle of mammalian cells, Radiat. Res. 27:535 (1966).Google Scholar
  23. 23.
    A. R. S. Collins, C. S. Downes, and R. T. Johnson, Cell-cycle related variations in UV damage and repair capacity in Chinese hamster (CHO-K1) cells, J. Cell. Physiol. 103:179–191 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    J. M. Clarkson, The induction of thymine dimers by UV light as a function of cell state, Int. J. Radiat. Biol; 34:583–586 (1978).CrossRefGoogle Scholar
  25. 25.
    R. D. Wood and H. J. Burki, Repair capability and the cellular age response for killing and mutation induction after UV, Mutat. Res. 95:505–514 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    A. M. Rauth, Evidence for dark-reactivation of ultraviolet damage in mouse L cells, Radiat. Res. 31:121–138 (1967).PubMedCrossRefGoogle Scholar
  27. 27.
    P. M. Busse, S. K. Base, R. W. Jones, and L. J. Tolmach, The action of caffeine on x-irradiated HeLa cells. II. Synergistic lethality, Radiat. Res., 71:666–677 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    S. K. Das, C. C. Lau, and A. B. Pardee, Abolition by cycloheximide of caffeine-enhanced lethality of alkylating agents in hamster cells, Cancer Res. 42:4499–4504 (1982).PubMedGoogle Scholar
  29. 29.
    K. Hanssen, B. A. Kihlman, C. Tanzarella, and F. Palitti, Influence of caffeine and 3-amino-benzamide in G2 on the frequency of chromosomal aberrations induced by thiotepa, mitomycin C and N-methyl-N-nitro-N’-nitrosoguanidine in human lymphocytes, Mutation Res. 126:251–258 (1984).CrossRefGoogle Scholar
  30. 30.
    C. Lücke-Huhle, L. Hieber, and R. D. Wegner, Caffeine-mediated release of alpha-radiation-induced G2 arrest increases the yield of chromosome aberrations, Int. J. Radiat. Biol. 43:123–132 (1983).CrossRefGoogle Scholar
  31. 31.
    R. M. Humphrey, B. A. Sedita, and R. E. Meyn, Recovery of Chinese hamster cells from ultra-violet irradiation damage, Int. J. Radiat. Biol. 18:61–69 (1970).CrossRefGoogle Scholar
  32. 32.
    P. Todd, Fractionated ultraviolet light irradiation of cultured Chinese hamster cells, Radiat. Res. 55:93–100 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Domon and A. M. Rauth, Cell cycle specific recovery from fractionated exposures of ultraviolet light, Radiat. Res. 55:81–92 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    B. M. Sutherland, Photoreactivation in mammalian cells, Int. Rev. Cytol. Suppl. 8:301–334 (1978).CrossRefGoogle Scholar
  35. 35.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, R. S. Lloyd, C. A. Smith, and M. E. Zolan, Repair responses to DNA damage: Enzymatic pathways in E. coli and human cells, J. Cell. Biochem. 18:271–283 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    R. M. Snapka and S. Linn, Efficiency of formation of pyrimidine dimers in SV40 chromatin in vitro, Biochemistry 20:68–72 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    R. Sheinin, J. Humbert, and R. E. Pearlman, Some aspects of eukaryotic DNA replication, Ann. Rev. Biochem. 47:277–316 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Collins, C. Jones, and C. Waldren, A survey of DNA repair incision activities after ultraviolet irradiation of a range of human, hamster, and hamster-human cell lines, J. Cell Science 56:423–440 (1982).PubMedGoogle Scholar
  39. 39.
    J. E. Cleaver, Structure of repaired sites in human DNA synthesized in the presence of inhibitors of DNA polymerases alpha and beta in human fibroblasts, Biochim, Biophys. Acta, 739:301–311 (1983).CrossRefGoogle Scholar
  40. 40.
    J. M. Clarkson, D. L. Mitchell, and G. M. Adair, The use of an immunological probe to measure the kinetics of DNA repair in normal and UV-sensitive mammalian cell lines, Mutat. Res. 112:287–299 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    R. W. Hart and R. B. Setlow, Correlation between deoxyribonucleic acid excision repair and life span in a number of mammalian species, Proc. Natl. Acad. Sci. (USA) 71:2169–2173 (1974).CrossRefGoogle Scholar
  42. 42.
    K. Y. Hall, R. W. Hart, A. K. Benirschke, and R. L. Walford, Correlations between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievable life span, Mechanisms of Aging and Development 24:163–173 (1984).CrossRefGoogle Scholar
  43. 43.
    G. J. Kantor and R. B. Setlow, Rate and extent of DNA repair in nondividing human diploid fibroblasts, Cancer Res. 41:819–825 (1981).PubMedGoogle Scholar
  44. 44.
    V. M. Maher, D. J. Dorney, A. L. Mendrala, B. Konze-Thomas, and J. J. McCormick, DNA excision-repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet radiation, Mutat. Res. 62:311–323 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    M. C. Paterson, B. P. Smith, P. H. M. Lohman, A. K. Anderson, and L. Fishman, Defective excision repair of x-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature (London) 260:444–447 (1976).CrossRefGoogle Scholar
  46. 46.
    V. M. Maher and J. J. McCormick, Effect of DNA repair on the cytotoxicity and mutagenicity of UV irradiation and of chemical carcinogens in normal and xeroderma pigmentosum cells, in: “Biology of Radiation Carcinogenesis,” J. M. Yuhas, R. W. Tennant, and J. D. Regan, eds., Raven Press, New York (1976), pp. 129–145.Google Scholar
  47. 47.
    J. G DeLuca, D. A. Kaden, E. A. Komives, and W. G. Thilly, Mutation of xeroderma pigmentosum lymphoblasts by far-ultraviolet light, Mutat. Res. 128:47–57 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    R. B. Setlow, F. M. Faulcon, and J. A. Regan, Defective repair of gamma-ray-induced DNA damage in xeroderma pigmentosum cells, Int. J. Radiat. Biol. 29:125–136 (1976).CrossRefGoogle Scholar
  49. 49.
    L. H. Thompson, J. S. Rubin, J. E. Cleaver, G. F. Whitmore, and K. Brookman, A screening method for isolating DNA repair-deficient mutants of CHO cells, Somat. Cell Genet. 6:391–405 (1980).PubMedCrossRefGoogle Scholar
  50. 50.
    L. H. Thompson, D. B. Busch, K. Brookman, C. L. Mooney, and D. A. Glaser, Genetic diversity of UV-sensitive DNA repair mutants of Chinese hamster ovary cells, Proc. Natl. Acad. Sci. (USA) 78:3734–3737 (1981).CrossRefGoogle Scholar
  51. 51.
    L. H. Thompson, The use of DNA-repair-deficient mutants of Chinese hamster ovary cells in studying mutagenesis mechanisms and for testing for environmental mutagens, in: “Induced Mutagenesis, Molecular Mechanisms and their Implications for Environmental Protection,” D. W. Lawrence, ed., Plenum Press, New York, London (1981), pp. 217–246.Google Scholar
  52. 52.
    J. S. Rubin and G. F. Whitmore, DNA repair-deficient Chinese hamster ovary cell exhibiting differential sensitivity to rays under aerobic and hypoxic conditions, Radiat. Res. 101:528–534 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    J. E. Cleaver, W. K. Kaufmann, L. N. Kapp, and S. D. Park, Replicon size and excision repair as factors in the inhibition and recovery of DNA synthesis from ultraviolet damage, Biochem. Biophys. Acta 739:207–215 (1983).PubMedCrossRefGoogle Scholar
  54. 54.
    A. J. Fornace, Recombination of parent and daughter strand DNA after UV-irradiation in mammalian cells, Nature (London) 304:552–554 (1983).CrossRefGoogle Scholar
  55. 55.
    M. J. Defais, P. C. Hanawalt, and A. P. Sarasin, Viral probes for DNA repair, Adv. Radiat, Biol. 10:1–37 (1983).Google Scholar
  56. 56.
    J. M. Clark and P. C. Hanawalt, Replicative intermediates in UV-irradiated simian virus 40, Mutat. Res. 132:1–14 (1984).PubMedCrossRefGoogle Scholar
  57. 57.
    W. A. Haseltine, Ultraviolet light repair and mutagenesis revisited, Cell 33:13–17 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Sancar and W. D. Rupp, A novel repair enzyme: uvR ABC excision nuclease of E. coli cuts a DNA strand on both sides of the damaged region, Cell 33:249–260 (1983).PubMedCrossRefGoogle Scholar
  59. 59.
    J. S. Rubin, A. L. Joyner, A. Bernstein, and G. F. Whitmore, Molecular identification of a human DNA repair gene following DNA-mediated gene transfer, Nature (London) 306:206–208 (1983).CrossRefGoogle Scholar
  60. 60.
    A. Westerveld, J. H. J. Hoeijmakers, M. van Duin, J. deWit, H. Odijk, A. Pastink, R. D. Wood, and D. Bootsma, Molecular cloning of a human DNA repair gene, Nature (London) 310:425–429 (1984).CrossRefGoogle Scholar
  61. 61.
    J. E. Trosko and C.-G Chang, The role of radiation and chemicals in the induction of mutations and epigenetic changes during carcinogenesis, Adv. Radiat. Biol. 9:1–36 (1981).Google Scholar
  62. 62.
    R. N. Buick and M. N. Pollak, Perspectives on clonogenic tumor cells, stem cells and oncogenes, Cancer Res. 44:4909–4918 (1984).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • A. M. Rauth
    • 1
  1. 1.Physics Division Ontario Cancer Institute Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations