Skip to main content

Radiation Induced Transformation in Primary Differentiated Thyroid Cultures

  • Chapter
Radiation Carcinogenesis and DNA Alterations

Part of the book series: NATO ASI Series ((NSSA,volume 124))

  • 102 Accesses

Abstract

A technique has been developed where long-term differentiated cell cultures can be established from human and animal (sheep) thyroid glands. The cultures retain morphological and functional characteristics of in vivo thyroid tissue. These include iodide trapping, T4 production and PAS positive follicle development. The cultures have been irradiated and subcultured to provide data on survival following exposure to various doses of125 Iodide or60 Cobalt. More recently, a technique has been developed which allows the development of several endpoints of in vitro transformation to be monitored in the irradiated cultures.

The system provides one of the first opportunities to study radiation transformation in primary differentiated cultures of epithelial origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Albert, F. J. Burns, Carcinogenic atmospheric pollutants and the nature of low level risk, in: “Origins of Human Cancer, Vol. 4, Book A,” H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds., Cold Spring Harbor Lab., Cold Spring Harbor, New York (1977), pp. 289–292.

    Google Scholar 

  2. B. J. Duffy, Jr. and P. J. Fitzgerald, Cancer of the thyroid in children, a report of 28 cases. Journal of Clinical Endocrinology 10: 1296 (1955).

    Article  Google Scholar 

  3. J. E. Dumont, J. F. Malone, and A. J. Van Herle, “Irradiation and Thyroid Disease: Dosimetric, Clinical and Carcinogenic Aspects,” Commission of the European Communities Publication No. Eur 6713 en. (1980).

    Google Scholar 

  4. T. Ezaki, K. Yaguwa, Y. Hayashi, T. Nishida and T. Ishmaru, J. Jap. Pract. Surg. Soc. 144(9): 1127 (1983).

    Article  Google Scholar 

  5. E. J. Hall, H. H. Rossi, M. Zaider, R. C. Miller, and C. Borek, in: “Neutron Carcinogenesis,” J. J. Broerse and G. B. Gerber, eds., Commission of the European Communities, Luxemburg (1982), pg. 381–405.

    Google Scholar 

  6. A. R. Kennedy, J. Cairns, and J. B. Little, Timing of the steps in transformation of C3H 10T1/2 cells by X-irradiation, Nature 307:85–86 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. J. C. Klein, The use of in vitro methods for the study of X-ray induced transformation, in: “Biology of Radiation Carcinogenesis,” J. M. Yuhas, R. W. Tennant, and J. D. Regan, eds., Raven Press, New York (1976), p. 301.

    Google Scholar 

  8. P. F. Kruse and M. K. Patterson, “Tissue Culture: Methods and Applications,” Academic Press, New York (1973).

    Google Scholar 

  9. R. Land, L. F. Parada, and R. A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature 304:597–602.

    Google Scholar 

  10. R. G. Martin and J. L. Anderson, Death and transformation, in: “Biology of Radiation Carcinogenesis,” J. M. Yuhas, R. W. Tennant, and J. D. Regan, eds, Raven Press, New York (1976), p. 287

    Google Scholar 

  11. C. Mothersill, A. Murphy, M. K. O’Connor, C. B. Seymour, and J. F. Malone, A role for lactate in the differentiation of cultured sheep thyroid cells, Cell Biol. Int. Reports 5(9):877–886 (1981).

    Article  CAS  Google Scholar 

  12. C. Mothersill, C. B. Seymour, and J. F. Malone, Maintenance of differentiated sheep thyroid cells in culture for 3 months, Acta Endocrinologica 107:54–59 (1984).

    PubMed  CAS  Google Scholar 

  13. C. Mothersill, C. B. Seymour, M.J. Moriarty and M.J. Cullen, Longterm culture of human differentiated thyroid cells, Acta Endocrinologica, 108:192–199 (1985).

    PubMed  CAS  Google Scholar 

  14. C. Mothersill and C. Seymour, Development of transformed characteristics by sheep thyroid cells irradiated as differentiated primary cultures, Cell Biol. Int. Reports, 8(10):887–896 (1984).

    Article  CAS  Google Scholar 

  15. R. T. Mulcahy, M. N. Gould, and K. H. Clifton, Radiogenic initiation of thyroid cancer: a common cellular event, Int. J. Radiat. Biol. 45(5):419–426 (1984).

    Article  CAS  Google Scholar 

  16. A. Murphy, C. Mothersill, M. K. O’Connor, J. F. Malone, M. J, Cullen, and J. K. Taaffe, An investigation of the optimum culture conditions for a differentiated culture of sheep thyroid cells, Acta Endocrinoligica 104:431–436 (1983).

    CAS  Google Scholar 

  17. R. F. Newbold and R. W. Overell, Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogenes, Nature 304:648–651 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. R. F. Newbold, R. W. Overell, and J. F. Connell, Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens, Nature 229:633–635 (1982).

    Article  Google Scholar 

  19. M. K. O’ Connor, M. J. Cullen, and J. F. Malone, Long-term culture of sheep thyroid cells, Acta Endocrinol. 93, Suppl. 231 (1980).

    Google Scholar 

  20. L. N. Parker, J. L. Belsky, T. Mandai, W. Blot and R. Kawate, Serum thyrotropin level and goitre in relation to childhood exposure to atomic radiation. J. Clin. Endocrinol. & Metab. 37: 797 (1973).

    Article  CAS  Google Scholar 

  21. J. Paul, “Cell and Tissue Culture, 5 Edition,” Churchill Livingstone, Edinburgh, New York and London (1965).

    Google Scholar 

  22. T. T. Puck and P. I. Marcus, Action of X-rays on mammalian cells, J. Exp. Med. 103:653–666 (1956).

    Article  PubMed  CAS  Google Scholar 

  23. C. A. Reznikoff, J. S. Bertram, D. W. Brankow, and C. Heidelberger, Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post-confluence inhibition of division, Cancer Res. 33:3239 (1973).

    PubMed  CAS  Google Scholar 

  24. E. R. Rooney and R. W. Powell, Carcinoma of the thyroid in children after Xray therapy in early childhood. J. Am. Med. Assoc. 169: 1 (1959).

    Article  PubMed  CAS  Google Scholar 

  25. C. L. Simpson and L. H. Hemplemann, The association of tumours and Roentgen ray treatment of the thorax in infancy. Cancer 10: 42 (1957).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seymour, C.B., Mothersill, C. (1986). Radiation Induced Transformation in Primary Differentiated Thyroid Cultures. In: Burns, F.J., Upton, A.C., Silini, G. (eds) Radiation Carcinogenesis and DNA Alterations. NATO ASI Series, vol 124. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5269-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5269-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5271-6

  • Online ISBN: 978-1-4684-5269-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics