Skip to main content

Protein Phosphorylation and Phospholipid Metabolism in the Superior Cervical Ganglion

  • Chapter
Neurobiology of Acetylcholine

Abstract

Our laboratory has been interested in the mechanisms by which neuronal activity regulates neuronal metabolism. Specifically, we have been studying the mechanisms by which neuronal activity regulates tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2) activity and catecholamine synthesis in the superior cervical ganglion (SCG). The SCG is a prototypical sympathetic ganglion. The noradrenergic principal neurons in this ganglion innervate the pineal gland, the salivary glands, the thyroid gland, smooth muscles of the iris, and blood vessels in the head and neck. These neurons are innervated by preganglionic sympathetic nerves whose cell bodies lie in the intermediolateral column of the spinal cord and which release acetylcholine (ACh) as their classical neurotransmitter. The principal ganglionic neurons contain both nicotinic and muscarinic cholinergic receptors. Stimulation of the nicotinic receptors produces a rapid depolarization that is due to a generalized increase in the permeability of the neurons to cations. Nicotinic stimulation typically leads to the generation of action potentials in the neurons. Stimulation of the muscarinic receptors produces a slower depolarization that is due at least in part to the inhibition of K+ efflux from the cells. These neurons also contain voltage-sensitive Ca2+ channels; depolarization activates these channels and thereby causes an additional influx of Ca2x into the cells. Finally, the pre-ganglionic neurons contain a variety of peptides in addition to ACh; the physiological effects of these peptides have not yet been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bone, E. A., Fretten, P., Palmer, S., Kirk C. J., and Michell, R. H., 1984, Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to vasopressin and muscarinic cholinergic stimuli, Biochem. J., 221: 803–811.

    Google Scholar 

  • Briggs, C. A. Whiting, G. J., Ariano, M. A., and McAfee, D. A., 1982, Cyclic nucleotide metabolism in the sympathetic ganglion, Cell Molec. Neurobiol.. 2: 129–141.

    Google Scholar 

  • Briggs, C. A., Horwitz, J., McAfee, D. A., Tsymbalov, S., and Perlman, R. L., 1985, Effects of neuronal activity on inositol phospholipid metabolism in the rat autonomic nervous system, J. Neurochem.. 44: 731–739.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, A. L., and Perlman, R. L., 1984a, Phosphorylation of tyrosine hydroxylase in the superior cervical ganglion, Biochem. Biophvs. Acta. 805: 217–226.

    Google Scholar 

  • Cahill, A. L., and Perlman, R. L., 1984b, Electrical stimulation increases phosphorylation of tyrosine hydroxylase in superior cervical ganglion of rat, Proc. Natl. Acad. Sci. USA. 81: 7243–7247.

    Google Scholar 

  • Cahill, A. L., Horwitz, J., and Perlman, R. L., 1985, Low-Na medium increases the activity and the phosphorylation of tyrosine hydroxylase in the superior cervical ganglion of the rat, J. Neurochem., 44: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Hanley, M. R., Benton, H. P., Lightman, S. L., Todd, K., Bone, B. A., Fretten, P., Palmer, S., Kirk, C. J., and Michell, R. H., 1984, A vasopressin-like peptide in the mammalian sympathetic nervous system, Nature. 309: 258–261.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Elfvin, L.-G., Schultzberg, M., Fuke, K., Said, S. I., Mutt, V., and Goldstein, M., 1977, Immunohistochemical evidence of vasoactive intestinal polypeptide-containing neurons and nerve fibers in sympathetic ganglia, Neuroscience. 2: 885–896.

    Article  Google Scholar 

  • Hokin, L. E., 1965, Autoradiographic localization of the acetylcholine- stimulated synthesis of phosphatidylinositol in the superior cervical ganglion, Proc. Natl. Acad. Sci.. 53: 1369–1376.

    Google Scholar 

  • Horwitz, J., and Perlman, R. L., 1984a, Stimulation of DOPA synthesis in the superior cervical ganglion by veratridine, J. Neurochem.. 42: 384–389.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, J., and Perlman R. L., 1984b, Activation of tyrosine hydroxylase in the superior cervical ganglion by nicotinic and muscarinic agonists, J. Neurochem.. 43: 546–552.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, J., Tsymbalov, S., and Perlman, R. L., 1984, Muscarine increases tyrosine 3-monooxygenase activity and phospholipid metabolism in the superior cervical ganglion of the rat, J. Pharmacol. Exp. Ther.. 229: 577–582.

    Google Scholar 

  • Horwitz, J., Tsymbalov, S., and Perlman, R. L., 1985, Muscarine stimulates the hydrolysis of inositol-containing phospholipids in the superior cervical ganglion, J. Pharmacol. Exp. Ther.. 233: 235–241.

    Google Scholar 

  • Ip, N. Y., Ho, C. K., and Zigmond, R. E. 1982a, Secretin and vasoactive intestinal peptide acutely increase tyrosine 3-monooxygenase in the rat superior cervical ganglion, Proc. Natl. Acad. Sci. USA. 79: 7566–7569.

    Google Scholar 

  • Ip, N. Y., Perlman, R. L., and Zigmond, R. E., 1982b, Both nicotinic and muscarinic agonists acutely increase tyrosine 3-monooxygenase activity in the superior cervical ganglion, J. Pharmacol. Exp. Ther.. 223: 280–283.

    Google Scholar 

  • Ip, N. Y., Perlman, R. L., and Zigmond, R. E., 1983, Acute transsynaptic regulation of tyrosine 3-monooxygenase activity in the rat superior cervical ganglion: Evidence for both cholinergic and noncholinergic mechanisms, Proc. Natl. Acad. Sci.. USA. 80: 2081–2085.

    Google Scholar 

  • McAfee, D. A., 1982, Superior cervical ganglion: Physiological considerations, in: Progress in Cholinergic Biology: Model Cholinergic Synapses, I. Hanin and A. M. Goldberg, eds., Raven Press, New York.

    Google Scholar 

  • Neidel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci.. USA. 80: 36–40.

    Google Scholar 

  • Voile, R. L., Quenzer, L. F., Patterson, B. A., Alkadhi, K. A., and Henderson, E. G., 1981, Cyclic guanosine 3:5-monophosphate accumulation and Ca-uptake by rat superior cervical ganglia during preganglionic stimulation, J. Pharmacol. Exp. Ther.. 219: 338–343.

    Google Scholar 

  • Voile, R. L., Quenzer, L. G., and Patterson, B. A., 1982, The regulation of cyclic nucleotides in a sympathetic ganglion, J. Autonomic Nervous System. 6: 65–72.

    Article  Google Scholar 

  • Wu, W. C.-S., Walaas, S. I., Nairn, A. C., and Greengard, P., 1982, Calcium/phospholipid regulates phosphorylation of a Mr 87k substrate protein in brain synaptosomes, Proc. Natl. Acad. Sci. USA, 79:5249– 5253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Perlman, R.L., Cahill, A.L., Horwitz, J. (1987). Protein Phosphorylation and Phospholipid Metabolism in the Superior Cervical Ganglion. In: Dun, N.J., Perlman, R.L. (eds) Neurobiology of Acetylcholine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5266-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5266-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5268-6

  • Online ISBN: 978-1-4684-5266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics