Advertisement

Brain Acetylcholine — A View From the Cerebrospinal Fluid

  • Ezio Giacobini
  • Robert Becker
  • Rodger Elble
  • Thomas Mattio
  • Michael McIlhany
  • G. Scarsella

Abstract

Is acetylcholine (ACh) metabolism in brain reflected by changes in the cerebrospinal fluid (CSF)? Are there specific changes in enzyme activities associated with ACh synthesis and hydrolysis, levels of the precursor (choline) and the neurotransmitter, which can be related to physiological and pathological conditions of the central cholinergic nervous system? This question has become more acute as several authors have reported a selective impairment of the cholinergic system with a marked decrease of cholineacetyltransferase (ChAc) and acetylcholinesterase (AChE) activity in several cortical and subcortical areas of the brain of patients affected by presenile (AD) and senile dementia of Alzheimer type (SDAT) (Davies, 1979; Perry et al., 1977; Rossor et al., 1982; Whitehouse et al., 1981). We have recently reported (Giacobini et al., 1985) changes in choline (Ch), AChE and ChAc activity in the CSF of a group of SDAT patients showing characteristic symptoms of dementia of different grades of severity, as compared to the CSF of healthy age-matched controls. In this review, we shall examine and discuss our recent results and some data found in the literature which might answer, although not completely, the question posed by the title of this paper.

Keywords

AChE Activity Cerebral Spinal Fluid AChE Inhibition Senile Dementia Choline Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquilonius, S.-M. and Eckernas, S.-A, 1975, Choline acetyltransferase in human cerebrospinal fluid: non-enzymatically and enzymatically catalyzed acetylcholine synthesis, J. Neurochem., 27: 317–318.CrossRefGoogle Scholar
  2. Ashford, J.W., Soldinger, S., Schaeffer, J., Cochran, L. and Jarvik, L., 1981, Physostigmine and its effect on six patients with dementia, Amer. J. Psychiatry, 138: 829–830.Google Scholar
  3. Atack, J.R., Perry, E.K., Bonham, J.R., Perry, R.H., Tomlinson, B.E., Blessed, G. and Fairbairn, A., 1983, Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form, Neurosci. Letters, 40: 199–204.Google Scholar
  4. Augustinsson, K.B., 1963, Classification and comparative enzymology of the cholinesterases and methods for their determination, Handb. Exp. Pharmakol., 15: 89–128.Google Scholar
  5. Bareggi, S.R. and Giacobini, E., 1978, Acetylcholinesterase activity in ventricular and cisternal CSF of dogs, J. Neurosci. Res., 3: 335–339.Google Scholar
  6. Bartolini, A., Bartolini, R. and Domino, E.F., 1973, Effects of physostigmine on brain acetylcholine content and release, Neuropharmacology, 12: 15–25.PubMedCrossRefGoogle Scholar
  7. Bourdois, P.S. and Mitchell, J.F., 1974, The output per stimulus of acetylcholine from cerebral cortical slices in the presence or absence of cholinesterase inhibition, Br. J. Pharmac., 52: 509–517.Google Scholar
  8. Brezenoff, H.E., 1973, Centrally induced pressor responses to intravenous and intraventricular physostigmine evoked via different pathways, Eur. J. Pharmac., 23: 290–292.Google Scholar
  9. Christie, J.E., Shering, A., Ferguson, J. and Glen, A.I.M., 1981, Physostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia, Brit. J. Psychiatry, 138: 46–50.Google Scholar
  10. Chubb, I.W. and Smith, A.D., 1975, Isoenzymes of soluble and membrane- bound acetylcholinesterase in bovine splachnic nerve and adrenal medulla, Proc. R. Soc. Lond. ( Biol. ), 191: 245–261.Google Scholar
  11. Chubb, I.W., Goodman, S. and Smith, A.D., 1974, Increased concentration of an isoenzyme of acetylcholinesterase in rabbit cerebrospinal fluid after peripheral stimulation, J. Physiol. (Lond.), 242: 118–120 P.Google Scholar
  12. Chubb, I.W., Goodman, S. and Smith, A.D., 1976, Is acetylcholinesterase secreted from central neurons into the cerebrospinal fluid? Neuroscience, 1: 57–62.PubMedCrossRefGoogle Scholar
  13. Consolo, S., Wang, J-X., Fusi, R., Vinci, R., Forloni, G. and Ladinsky, H., 1984, In vitro and in vivo evidence for the existence of presynaptic muscarinic cholinergic receptors in the rat hippocampus. Brain Res., 30: 147–151.CrossRefGoogle Scholar
  14. Davies, P., 1979, Neurotransmitter-related enzymes in senile dementia of the Alzheimer type, Brain Res., 171: 319–327.PubMedCrossRefGoogle Scholar
  15. Davis, K.L. and Mohs, R.C., 1982, Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostimgine, Am. J. Psychiatry, 139: 1421–1424.Google Scholar
  16. Davis, K.L., Mohs, R.C., Tinklenberg, J.R., Pfefferbaum, A., Hollister, L.E. and Kopell, B.S., 1978, Physostigmine: improvement of long-term memory processes in normal subjects, Science, 201: 272–274.PubMedCrossRefGoogle Scholar
  17. Davis, K.L., Mohs, R.L. and Tinklenberg, J.R., 1979, Enhancement of memory by physostigmine, New Eng. J. Med,, 301: 946.Google Scholar
  18. Davis, K.L., Hsieh, J.Y-K., Levy, M.I., Horvath, T.B., Davis, B.M. and Mohs, R.C., 1982, Cerebrospinal fluid acetylcholine, choline and senile dementia of the Alzheimer type, Psychopharm. Bull., 18: 193-195.Google Scholar
  19. DeKosky, S.T., Hackney, C. and Scheff, S.W., 1985, Acetylcholine (ACh) synthesis and endogenous choline acetyltransferase (CAT) inhibitory activity in human CSF, Neurology, 35 (Suppl 1): 258.Google Scholar
  20. Drachman, D.A., Glosser, G., Fleming, P. and Longenecker, G., 1982, Memory decline in the aged: treatment with lecithin and physostigmine, Neurology, 32: 944–950.PubMedCrossRefGoogle Scholar
  21. Drachman, D.A. and Sahakian, B.J., 1980, Memory and cognitive function in the elderly, A preliminary trial of physostigmine, Arch. Neurol., 37: 674–675.Google Scholar
  22. Giacobini, E., 1959, The distribution and localization of cholinesterases in nerve cells, Acta Physiol. Scand., 45 (Suppl 156): 1–45.Google Scholar
  23. Giacobini, E., 1982, in: Aging of the Brain: Molecular and Cellular Mechanisms of Aging, Raven Press, New York, pp. 271–284.Google Scholar
  24. Giacobini, E., 1983, in: Aging of the Brain, Raven Press, New York, pp. 197–210.Google Scholar
  25. Giacobini, E., Pilar, G., Suszkiw, J. and Uchimura, H., 1979, Normal distribution and denervation changes of neurotransmitter related enzymes in cholinergic neurones, J. Physiol., 286: 233–253.PubMedGoogle Scholar
  26. Giacobini, E., Mussini, I. and Mattio, T., 1984, Aging of cholinergic synapses in the avian iris, In: Developmental Neuroscience: Physiological and Pharmacological Control of Nervous System Development, F. Caciagli, E. Giacobini and R. Paoletti, ed., Elsevier, pp. 89–93.Google Scholar
  27. Giacobini, E., Becker, R., Elble, R., Mattio, T. and Mcllhany, 1985, Acetylcholine metabolism in brain. Is it reflected by CSF changes? in: Biological Conference, A. Fisher, Ed., Plenum Press.Google Scholar
  28. Gisiger, V. and Vigny, M., 1977, A specific form of acetylcholinesterase is secreted by rat sympathetic ganglia, FEBS Lett., 84: 253–256.PubMedCrossRefGoogle Scholar
  29. Greenfield, S.A. and Shaw, S.G., 1982, Release of acetylcholinesterase and aminopeptidase in vivo following infusion of amphetamine into the substantia nigra, Neuroscience, 7: 2883–2893.PubMedCrossRefGoogle Scholar
  30. Grigoriadis, D. and Seeman, P., 1984, The dopamine/neuroleptic receptor, Can. J. Neurolog. Sci., 11: 108–113.Google Scholar
  31. Haber, B. and Grossman, R.G., 1983, Acetylcholine metabolism in intracranial and lumbar cerebrospinal fluid and in blood, jln: Neurobiology of Cerebrospinal Fluid, H. Wood, Ed., Plenum Press.Google Scholar
  32. Hallak, M.E. and Giacobini, E., 1985, Effects of physostigmine on cholin- esterase activity, choline and acetylcholine levels in rat brain, J. Neurochem., Suppl. 44:S105A.Google Scholar
  33. Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A. and Martin, R.L., 1982, A new clinical scale for the staging of dementia, Brit. J. Psychiatry, 140: 566–572.Google Scholar
  34. Johns, C.A., Haroutunian, V., Greenwald, B.S., Mohs, R.C., Davis, B.M., Kanof, P., Horvath, T.B. and Davis, K.L., 1985, Development of cholinergic drugs for the treatment of Alzheimer’s disease, Drug. Dev. Res., 5: 77–96.CrossRefGoogle Scholar
  35. Johnson, S. and Domino, E.F., 1971, Cholinergic enzymatic activity of cerebrospinal fluid of patients with various neurologic diseases, Clin. Chim. Acta, 35: 421–428.Google Scholar
  36. Jotkowitz, S., 1983, Lack of clinical efficacy of chronic oral physostigmine in Alzheimer’s disease, Ann. Neurol., 14: 690–691.Google Scholar
  37. Kilbinger, H., 1984a, Facilitation and inhibition by muscarinic agonists of acetylcholine release from guinea pig myenteric neurons: mediation through different types of neuronal muscarinic receptors, Trends in Pharmacol. Sci., Suppl: 49–52.Google Scholar
  38. Kilbinger, H., 1984b, Presynaptic muscarinic receptors modulating acetylcholine release, Trends in Pharmacol. Sci., 55: 103–105.Google Scholar
  39. Laurent, B., Hibert-Kuntzler, 0., Chazot, G., Michel, D. and Schott, B., 1981, Effets de la physostigmine sur les syndromes amnesiques, Rev. Neurol., 137: 649–660.Google Scholar
  40. Lee, T.J-F., 1985, Cholinergic mechanisms in the cerebral circulation, in: Trends in Autonomic Pharmacology, Vol. 13, S. Kalsner, Ed., Urban Schwarzenberg, Baltimore-Munich.Google Scholar
  41. Levin, H.S. and Peters, B.H., 1983, Long-term administration of oral physostigmine and lecithin improve memory in Alzheimer’s disease, Notes and Letters, p. 210, 1983.Google Scholar
  42. Lubinska, L. and Niemerko, S., 1971, Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves, Brain Res., 27: 329–342.PubMedCrossRefGoogle Scholar
  43. Marchi, M., Paudice, P., Caviglia, A. and Raiteri, M., 1983, Is acetylcholine release from striatal nerve endings regulated by muscarinic autoreceptors ? Eur. J. Pharmacol., 91: 63–68.PubMedCrossRefGoogle Scholar
  44. Massouli£, J. and Bon, S., 1982, The molecular forms of cholinesterase and acetylcholinesterase in vertebrates, Ann. Rev. Neurosci., 5: 57–106.Google Scholar
  45. Mattio, T.G., Richardson, J.S. and Giacobini, E., 1984, Effects of DFP on iridic metabolism and release of acetylcholine and on pupillary function in the rat, Neuropharmacology, 23: 1207–1214.PubMedCrossRefGoogle Scholar
  46. Mattio, T.G., Richardson, J.S. and Giacobini, E., 1985, Acute effects of cholinesterase inhibitors on uptake of choline in the rat iris, Neuropharmacology, 24: 325–328.PubMedCrossRefGoogle Scholar
  47. Muramoto, O., Sugishita, M. and Ando, K., 1984, Cholinergic system and constructional praxis: a further study of physostigmine in Alzheimer’s disease, J. Neurol. Neurosurg. Psych., 47: 485–491.CrossRefGoogle Scholar
  48. Perry, E., Perry, R., Blessed, G. and Tomlinson, B., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet, 1: 189.PubMedCrossRefGoogle Scholar
  49. Peters, B.H. and Levin, H.S., 1979, Effects of physostigmine and lecithin on memory in Alzheimer’s disease, Ann. Neurol., 6: 219–221.Google Scholar
  50. Peters, B.H. and Levin, H.S., 1982, Chronic oral physostigmine and lecithin administration in memory disorders of aging, in: Aging–Alzheimer’s Disease: A Report of Progress, S. Corkin, K.L. Davis, J.H. Growdon, E. Usdin and R.J. Wurtman, eds., pp. 421–426, Raven Press, New York.Google Scholar
  51. Plattner, F. and Hintner, H., 1930, Die spaltung von acetylcholin durch organextrakte and koperflussigkeiten, Pflug Arch. Ges. Physiol., 225: 19–25.Google Scholar
  52. Rimon, R., Puhakka, P., Venolainen, E. and Mandel, A.J., 1973, Psychiatria Fennica, 265–267.Google Scholar
  53. Rossor, M.N., Garrett, N.J., Johnson, A.L., Mountjoy, C.Q., Roth, M. and Iversen, L.L., 1982, A post-mortem study of the cholinergic and GABA systems in senile dementia, Brain, 105: 313–330.PubMedCrossRefGoogle Scholar
  54. Rylett, R.J., Ball, M.J. and Calhoun, E.H., 1983, Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease, Brain Res., 289: 169–175.PubMedCrossRefGoogle Scholar
  55. Scarsella, G., Toschi, G., Bareggi, S.R. and Giacobini, E., 1979, Molecular forms of cholinestereases in cerebrospinal fluid, blood plasma, and brain tissue of the beagle dog, J. Neurosci. Res., 4: 19–24.Google Scholar
  56. Smith, C.M. and Swash, M., 1979, Physostigmine in Alzheimer’s disease, Lancet, 1: 42.PubMedCrossRefGoogle Scholar
  57. Sullivan, E.V., Shedlack, K.J., Corkin, S. and Growdon, J.H., 1982, Physostigmine and lecithin in Alzheimer’s disease, in: Aging–Alzheimer’s Disease: A Report of Progress, S. Corkin, K.L. Davis, J.H. Growdon, E. Usdin and R.J. Wurthman, eds., pp. 361–367, Raven Press, New York.Google Scholar
  58. Thai, L.J. and Fuld, P.A., 1983, Memory enhancement with oral physostigmine in Alzheimer’s disease, New Eng. J. Med., 308: 720.Google Scholar
  59. Thai, L.J., Fuld, P.A., Masur, D.M. and Sharpless, N.S., 1983, Oral physostigmine and lecithin improve memory in Alzheimer disease, Ann. Neurol., 13: 491–496.Google Scholar
  60. Thai, L.J., Masur, D.M., Fuld, P.A., Sharpless, N.S. and Davies, P., 1983, Memory improvement with oral physostigmine and lecithin in Alzheimer’s disease, in.: Banbury Report 15, Cold Spring Laboratory.Google Scholar
  61. Tune, L., Gucker, S., Folstin, M., Oshida, L. and Coyle, J.R., 1985, Cerebrospinal fluid acetylcholinesterase in senile dementia of the Alzheimer type, Ann. Neurol., 17: 46–48.Google Scholar
  62. Vogt, M., Smith, A.D. and Fuenmayor, L.D., 1984, Factors influencing the cholinesterases of cerebrospinal fluid in the anaesthetized cat, Science, 12: 979–995.Google Scholar
  63. Wettstein, A., 1983, No effect from double-blind trial of physostigmine and lecithin in Alzheimer disease, Ann. Neurol., 13: 210–212.Google Scholar
  64. Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T. and DeLong, M.R., 1981, Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol., 10: 122–126.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Ezio Giacobini
    • 1
    • 2
    • 3
    • 4
  • Robert Becker
    • 1
    • 2
    • 3
    • 4
  • Rodger Elble
    • 1
    • 2
    • 3
    • 4
  • Thomas Mattio
    • 1
    • 2
    • 3
    • 4
  • Michael McIlhany
    • 1
    • 2
    • 3
    • 4
  • G. Scarsella
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of PharmacologySouthern Illinois University School of MedicineSpringfieldUSA
  2. 2.Department of Internal Medicine (Division of Neurology)Southern Illinois University School of MedicineSpringfieldUSA
  3. 3.Department of Psychiatry and Surgery (Division of Neurosurgery)Southern Illinois University School of MedicineSpringfieldUSA
  4. 4.Department of Cell BiologyUniversity of RomeRomeItaly

Personalised recommendations