Advertisement

Concluding Remarks: Past, Present and Future of Cholinergic Research

  • Alexander G. Karczmar

Abstract

First of all, let me state that I am indeed fortunate and lucky: fortunate that so many of my friends were willing to take time for coming to this Meeting and providing Chapters for the book in my honor; lucky to have stayed the course long enough to have at least some excuse for this Meeting being organized for me.

Keywords

Cholinergic Neuron Cholinergic System Sympathetic Ganglion Cholinergic Agonist Cholinergic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.B. Abou-Donia: Toxicokinetics and metabolism of delayed neurotoxic organophosphorus esters. Neurotoxicol. 4: 113–130, 1983.Google Scholar
  2. 2.
    P. Adams: Muscarinic excitation of vertebrate neurons. In: “Cellular and Molecular Basis of Cholinergic Function”. M.J. Dowdall, ed., Ellis Horwood Publ., Chichester, U.K., 1986 (in press).Google Scholar
  3. 3.
    E.X. Albuquerque, J.E. Warwick, J.R. Tasse and F.M. Samsone: Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat. Exp. Neurol. 38: 607–634, 1972.CrossRefGoogle Scholar
  4. 4.
    G.B. Ansell and S. Spanner: Choline transport and metabolism in the brain. L. Horrocks, G.B. Ansell and G. Porcellati eds., 1:137–144, Raven Press, N.Y., 1982.Google Scholar
  5. 5.
    R.T. Bartus, R.L. Dean, J.A. Goas and S.A. Lippa: Age related changes in passive avoidance retention and modulation with chronic dietary choline. Science 209: 301–309, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    N.J.M. Birdsall, C.A.M. Curtis, P. Eveleigh, E.C. Hulme, E.K. Pedter, D. Poyner, J.M. Stockton and M. Wheatley: Muscarinic receptor subtypes. In: “Cellular and Molecular Bases of Cholinergic Function”. M.J. Dowdall, ed., Ellis Horwood Publishers, Chichester, U.K., 1986 (in press).Google Scholar
  7. 7.
    N.J.M. Birdsall and E.L. Hulme: Biochemical studies on muscarinic acetylcholine receptors. J. Neurochem. 27: 7–16, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    J.K. Blusztajn and R.J. Wurtman: Choline and cholinergic neurons. Science 221: 614–620, 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    D. Bovet, V.G. Longo and B. Silvestrini: Les methodes d’investiga tions electrohysiologiques dans l’etude des medicaments tranquillisants. In: “International Symposium on Psychotropic Drugs”. S. Garattini and V. Ghetti, eds., pp. 193–206, Elsevier, Amsterdam, 1957.Google Scholar
  10. 10.
    N.P. Boyd and J.B. Cohen: Desensitization of membrane-bound acetylcholine receptor by amine non-competitive antagonists and aliphatic alcohols: studies of [3H] acetylcholine binding and 22 Na+ ion fluxes. Biochem. 23: 4023–4033, 1984.CrossRefGoogle Scholar
  11. 11.
    P.B. Bradley and J. Elkes: The effects of some drugs on the electrical activity of the brain. Brain 80: 77–117, 1957.PubMedCrossRefGoogle Scholar
  12. 12.
    R. Carnap: The Logical Syntax of Language. Harcourt, N.Y., 1937.Google Scholar
  13. 13.
    J.P. Changeux, A. Devillers-Thiery and P. Chemouilli: Acetylcholine receptor: an allosteric protein. Science 225: 1335–1345, 1984.PubMedCrossRefGoogle Scholar
  14. 14.
    A. Cheramy, V. Leviel, A. Nieoullon and J. Glowinski: Role of various nigral afferences on the activity of nigrostriatal dopaminergic pathways. In: “Neurotransmitters”. P. Simon, ed., Adv. Pharmacol. Therap. 2: 131–143, Pergamon Press, Oxford, 1979.Google Scholar
  15. 15.
    A.E. Cole and R.A. Nicoll: Characterization of a slow cholinergic postsynaptic potential recorded in vitro from rat hippocampal pyramidal cells. J. Physiol. (Lond.) 352: 173–188, 1984.Google Scholar
  16. 16.
    H.H. Dale: The action of certain esters and esters of choline and their relation to muscarine. J. Pharmacol. Exper. Therap. 6: 147–190, 1914.Google Scholar
  17. 17.
    H.H. Dale: Pharmacology and nerve endings. Proc. Roy. Soc. Med. 8: 319–332, 1935.Google Scholar
  18. 18.
    E.F. Domino: Electroencephalographic and behavioral arousal effects of small doses of nicotine. Ann. N.Y. Acad. Sci. 142: 216–244, 1967.CrossRefGoogle Scholar
  19. 19.
    N.J. Dun: Peptide hormones and transmission in sympathetic ganglia. In: “Autonomic Ganglia”. L.G. Elfvin, ed., pp. 345–366, John Wiley, Chichester, U.K., 1985.Google Scholar
  20. 20.
    N.J. Dun and A.G. Karczmar: Blockade of ACh potentials by alpha-bungarotoxin in rat superior cervical ganglion cells. Brain Res. 196: 536–540, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    N.J. Dun, M. Kiraly and R.C. Ma: Evidence for a serotonin mediated slow excitatory potential in the guinea-pig coeliac ganglia. J. Physiol. (Lond.) 351: 61–76, 1984.Google Scholar
  22. 22.
    J.C. Eccles: Facilitation and inhibition in the superior cervical ganglion. J. Physiol. (Lond.) 85: 207–238, 1935.Google Scholar
  23. 23.
    J.C. Eccles: Historical introduction. In: “Symposium on Central Cholinergic Transmission and its Behavioral Aspects”. A.G. Karczmar, ed., Fed. Proc. 28:90–94, 1969.Google Scholar
  24. 24.
    J.C. Eccles: The Human Mystery. The Gifford Lectures, U. of Edinburgh, 1977–1978, Routledge and Kegan Panel, London, 1984.Google Scholar
  25. 25.
    J.C. Eccles, P. Fatt and K. Koketsu: Cholinergic and inhibitory synapses in a central nervous pathway. The Australian J. Sci. 16: 50–54, 1953.Google Scholar
  26. 26.
    J.C. Eccles, P. Fatt and K. Koketsu: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons. J. Physiol. (Lond.) 126: 524–562, 1954.Google Scholar
  27. 27.
    R.M. Eccles: Responses of isolated curarized sympathetic ganglia. J. Physiol. 117: 196–217, 1952.PubMedGoogle Scholar
  28. 28.
    R.M. Eccles and B. Libet: Origin and blockade of the synaptic responses of curarised sympathetic ganglia. J. Physiol. (Lond.) 157: 484–503, 1961.Google Scholar
  29. 29.
    W. Feldberg: Present views on the mode of action of acetylcholine in the central nervous system. Physiol. Rev. 25: 596–642, 1945.PubMedGoogle Scholar
  30. 30.
    W. Feldberg and M. Vogt: Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. 107: 372–381, 1948.PubMedGoogle Scholar
  31. 31.
    W. Feldberg: A Pharmacological Approach to the Brain from its Inner and Outer Surface. Williams and Wilkins, Baltimore, 1963.Google Scholar
  32. 32.
    W. Feldberg and R.D. Myers: Effects on temperature of amines injected into the cerebral ventricles. A new concept of temperature regulation. J. Physiol. (Lond.) 173: 226–237, 1964.Google Scholar
  33. 33.
    T.P. Feng and T.H. Li: Studies on the neuromuscular junction. XXIII. A new aspect of the phenomena of eserine potentiation and post-tetanic facilitation in mammalian muscles. Chinese J. Physiol. 16: 37–50, 1941.Google Scholar
  34. 34.
    A. Fisher and I. Hanin: Minireview: choline analogs as potential tools in developing selective animal models of central cholinergic hypofunction. Life Sci. 27: 1615–1634, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    H. Fuhner: Untersuchungen uber die peripherale Wirkung des Physostigmines. Arch. Exp. Path. Pharmakol. 82: 205–220, 1918.Google Scholar
  36. 36.
    S.N. Glisson, A.G. Karczmar and L. Barnes: Cholinergic effects on adrenergic neurotransmitters in rabbit brain parts. Neuropharmacol. 11: 465–477, 1972.CrossRefGoogle Scholar
  37. 37.
    K. Godel: Uber formal unentscheidbare Satze der Principia Mathematica and vervandter Systeme. I. Monatshefte f. Math. Physik 38: 173–198, 1931.Google Scholar
  38. 38.
    P. Greengard: Cyclic nucleotides, phosphorylated proteins and neuronal function. Raven Press, N.Y., 1978.Google Scholar
  39. 39.
    A. Hodges: Alan Turing: The Enigma. Touchstone Brooks, N.Y., 1983.Google Scholar
  40. 40.
    M.R. Hokin and L.E. Hokin: The role of phosphatidic acid and phosphoionositide in transmembrane transport elicited by acetylcholine and other humoral agents. Int. Rev. Neurobiol. 2: 99–136, 1960.PubMedCrossRefGoogle Scholar
  41. 41.
    B. Holmstedt: The ordeal bean of old calabar: The pageant of Physostigma Venenosum in medicine. In: “Plants in the Development of Modern Medicine”. T. Swain, ed. pp. 303–360, Harvard U. Press, Cambridge, Mass., 1972.Google Scholar
  42. 42.
    M.K. Johnson: Acetylcholinesterase and neuropathy target esterase (NTE) compared and contrasted with the aid of organophosphorus esters. In: “Cellular and Molecular Basis of Cholinergic Function”. M.J. Dowdall, ed., Ellis Horwood Pubis., Chichester, U.K., 1986 (in press).Google Scholar
  43. 43.
    L.Y. Jan and Y.N. Jan: Peptidergic transmission in sympathetic ganglia of the frog. J. Physiol. (Lond.) 327: 219–246, 1982.Google Scholar
  44. 44.
    D.S. Janowsky, S.C. Risch, L.D. Judd, L.Y. Huey and D.C. Parker: Brain cholinergic systems and the pathogenesis of affective disorders. In: “Central Cholinergic Mechanisms and Adaptive Dysfunctions”. M.M. Singh, D.M. Warburton and H. Lai, eds., pp. 309–334, Plenum Publ. Corp., N.Y., 1985.CrossRefGoogle Scholar
  45. 45.
    M. Jouvet: Some monoaminergic mechanisms controlling sleep and waking. In: “Brain and Human Behavior”. A.G. Karczmar and J.C. Eccles, eds., pp. 131–160, 1972, Springer-Verlag, Berlin, 1972.CrossRefGoogle Scholar
  46. 46.
    A.G. Karczmar: The role of amputation and nerve resection in the regressing limbs of urodele larvae. J. Exp. Zool. 103: 401–427, 1946.PubMedCrossRefGoogle Scholar
  47. 47.
    A.G. Karczmar: Antagonisms between a bisquaternary oxamide, WIN 8078, and depolarizing and competitive blocking agents. J. Pharmacol. Exper. Therap. 119: 39–47, 1951.Google Scholar
  48. 48.
    A.G. Karczmar: Ontogenetic effects of anticholinesterase agents. In: “Cholinesterases and anticholinesterase agents”. G.B. Koelle, ed., Handch. d. Exper. Pharmakol. Erganzungswk. 15:179–186, Springer-Verlag, Berlin, 1963a.Google Scholar
  49. 49.
    A.G. Karczmar: Ontogenesis of cholinesterases. In: “Cholinesterases and anticholinesterase agents”. G.B. Koelle, ed., Handbch. d. Exper. Pharmakol., Erganzungswk. 15:799–832, Springer-Verlag, Berlin, 1963b.Google Scholar
  50. 50.
    A.G. Karczmar: Pharmacology and antagonism of four organophosphorus agents. Report No. 2, Subcontract No. SU-630505-64, Melpar Inc., Virginia, 1964 (unpublished).Google Scholar
  51. 51.
    A.G. Karczmar: Pharmacologic, toxicologic and therapeutic properties of anticholinesterase agents. In: “Physiological Pharmacology”. W.S. Root and F.G. Hofman, eds., 3: 163–322, Academic Press, N.Y., 1967.Google Scholar
  52. 52.
    A.G. Karczmarversus F.G. Standaert: Discussion. Ann. N.Y. Acad. Sci. 144: 568–570, 1967.Google Scholar
  53. 53.
    A.G. Karczmar: Introduction: history of the research with anticholinesterase agents. In: “Anticholinesterase Agents”. A.G. Karczmar, ed., Intern. Encyclop. Pharmacol. Therap., Section 13, 1:1–44, Pergamon Press, Oxford, 1970.Google Scholar
  54. 54.
    A.G. Karczmar: What we know now, will know in the future, and possibly cannot ever “know” in neurosciences. In: “Brain and Human Behavior”. A.G. Karczmar and J.C. Eccles, eds., pp. 63–92, Springer-Verlag, Berlin, 1972.CrossRefGoogle Scholar
  55. 55.
    A.G. Karczmar: Brain acetylcholine and seizures. In: “Psychobiology of Convulsive Therapy”. M. Fink, S. Kety, J. McGaugh and T.A. Williams, eds., pp. 251–270, V.H. Winston and Sons, Washington, D.C., 1974.Google Scholar
  56. 56.
    A.G. Karczmar: Cholinergic influences on behavior. In: “Cholinergic Mechanisms”. P.G. Waser, ed., pp. 501–529, Raven Press, N.Y., 1975.Google Scholar
  57. 57.
    A.G. Karczmar: Overview: Cholinergic drugs and behavior–what effects may be expected from a “cholinergic diet”? In: “Nutrition and the Brain”. A. Barbeau, J.H. Growdon and R.J. Wurtman, eds., 5: 141–175, Raven Press, N.Y., 1979.Google Scholar
  58. 58.
    A.G. Karczmar: Present and future of the development of anti-OP drugs. Fund. Appl. Toxicol. 5: S270–S279, 1985.CrossRefGoogle Scholar
  59. 59.
    A.G. Karczmar: Autonomic disease and clinical applications of ganglionic agents. In: “Autonomic and Enteric Ganglia”. A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 459–475, Plenum Publ. Corp., N.Y., 1986.CrossRefGoogle Scholar
  60. 60.
    A.G. Karczmar: Ganglionic transmission as a model for CNS function. In: “Autonomic and Enteric Ganglia”. A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 477–499, Plenum Publ. Corp., N.Y., 1986b.CrossRefGoogle Scholar
  61. 61.
    A.G. Karczmar: Historical and anatomical bases of ganglionic and enteric transmission. In: “Autonomic and Enteric Ganglia”. A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 3–26, Plenum Publ. Corp., N.Y., 1986c.CrossRefGoogle Scholar
  62. 62.
    A.G. Karczmar: Schizophrenia and cholinergic system. In: “Receptors and Ligands in Psychiatry and Neurology”. A.K. Sen and T. Lee, eds., Cambridge U. Press, Cambridge, U.K., 1986d (in press).Google Scholar
  63. 63.
    A.G. Karczmar: Conference on dynamics of cholinergic function: Overview and comments. In: “Dynamics of Cholinergic Function”. I. Hanin, ed., Plenum Publ. Corp., N.Y., 1986e (in press).Google Scholar
  64. 64.
    A.G. Karczmar: Historical development of concepts of ganglionic transmission. In: “Autonomic and Enteric Ganglia”. A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 3–26, Plenum Publ. Corp., N.Y., 1986f.CrossRefGoogle Scholar
  65. 65.
    A.G. Karczmar and N.J. Dun: Cholinergic synapses: physiological, pharmacological and behavioral considerations. In: “Psychopharmacology: A Generation of Progress”. M.A. Lipton, A. DiMascio and K.F. Killam, eds., pp. 293–306, Raven Press, N.Y., 1978.Google Scholar
  66. 66.
    A.G. Karczmar: New roles for cholinergics in CNS disease. Drug Therapy 4: 31–42, 1979.Google Scholar
  67. 67.
    A.G. Karczmar and N.J. Dun: Pharmacology of synaptic ganglionic transmission and second messengers. In: “Autonomic and Enteric Ganglia”. A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 297–337, Plenum Publ. Corp., N.Y., 1986.CrossRefGoogle Scholar
  68. 68.
    A.G. Karczmar and J.W. Howard: Antagonism of d-tubocurarine and other pharmacological properties of certain bisquaternary salts of basically substituted oxamides (WIN) 8077 and analogs. J. Pharmacol. Exper. Therap. 113: 30, 1955.Google Scholar
  69. 69.
    A.G. Karczmar and G.H. Kindel: Acetylcholine turnover and aggres sion in related three strains of mice. Progr. Neuropsychopharmacol. 5: 35–48, 1981.CrossRefGoogle Scholar
  70. 70.
    A.G. Karczmar and D.L. Richardson: Cholinergic mechanisms, schizophrenia and neuropsychiatry adaptive dysfunctions. In: “Central Cholinergic Mechanisms and Adaptive Dysfunctions”. M.M. Singh, D.M. Warburton and H. Lai, eds., pp. 193–222, Plenum Publ. Corp., N.Y., 1985.CrossRefGoogle Scholar
  71. 71.
    A.G. Karczmar, R. Srinivasan and J. Bernsohn: Cholinergic function in the developing fetus. In: “Fetal Pharmacology”. L.O. Boreus, ed., Raven Press, N.Y., pp. 127–177, 1973.Google Scholar
  72. 72.
    Y. Kataoka, Y. Gutman, A. Guidotti, P. Panula, J. Wroblewski, D. Cosenza-Murphy, Y.Z. Wu and E. Costa: Intrinsic GABAergic system of adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA: 3218–3222, 1984.Google Scholar
  73. 73.
    G.B. Koelle: Poisons of the Canon. In: “Leaves from the Copper Beeches”, pp. 91–96, Livingston Publ. Co., Narberth, Pa., 1959.Google Scholar
  74. 74.
    G.B. Koelle: Cytological distributions and physiological functions of cholinesterases. In: “Cholinesterases and Anticholinesterase Agents”. G.B. Koelle, ed., Handbch. d. Exper. Pharmakol. Erganzungswk. 15:187–298, Springer-Verlag, Berlin, 1963.Google Scholar
  75. 75.
    K. Koketsu and A.G. Karczmar: General concepts of ganglionic transmission and modulation. In: “Autonomic and Enteric Ganglia”. A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 63–77, Plenum Publ. Corp., N.Y., 1986.CrossRefGoogle Scholar
  76. 76.
    T. Koppanyi and A.G. Karczmar: Contribution to the study of the mechanism of action of cholinesterase inhibitors. J. Pharmacol. Exp. Therap. 327–343, 1951.Google Scholar
  77. 77.
    T. Koppanyi and A.G. Karczmar: Experimental Pharmacodynamics. Burgess Publ. Co., Minneapolis, 1st Ed., 1955.Google Scholar
  78. 78.
    M. Kremer, H.E.S. Pearson and S. Wright: Action of prostigmine on the spinal cord in man. J. Physiol. (Lond.) 89: 21–23P, 1937.Google Scholar
  79. 79.
    D.J. Kupfer and D.J. Edwards: Multitransmitter mechanisms and treatment of affective disease. In: “Neuropsychopharmacology”. P. Deniker, C. Radouco-Thomas and A. Villeneuve, eds., 1:609–623, Pergamon Press, Oxford, 1978.Google Scholar
  80. 80.
    C. Larsson, A. Nordberg, G. Wahlstrom, U. Arnelo and L. Nilsson: Effects of choline nicotine treatment on brain acetylcholine receptors. In: “Cellular and Molecular Basis of Cholinergic Function”. M.J. Dowdall, ed., Ellis Horwood Publs., Chichester, U.K., 1986 (in press).Google Scholar
  81. 81.
    R. Levi-Montalcini: Growth control of nerve cells by protein factor and its antiserum. Science 143: 105–110, 1964.PubMedCrossRefGoogle Scholar
  82. 82.
    B. Libet: Which postsynaptic action of dopamine is mediated by cyclic AMP? Life Sci. 24: 1043–1058, 1979.PubMedCrossRefGoogle Scholar
  83. 83.
    B. Libet: Heterosynaptic interaction at a sympathetic neuron as a model for induction and storage of a postsynaptic memory trace. In: “Neurobiology of Learning and Memory”. G. Lynch, J.L. McGaugh and N.M. Weinberger, eds., pp. 405–430, The Guilford Press, New York, 1984.Google Scholar
  84. 84.
    O. Loewi: Uber humorale Ubertragbarkeit der Herzenwirkung. I Mitteilung. Pflugers Arch. ges. Physiol. 189: 239–242, 1921.CrossRefGoogle Scholar
  85. 85.
    V.G. Longo: Electroencephalographic Atlas for Pharmacological Research. Elsevier, Amsterdam, 1962.Google Scholar
  86. 86.
    F.C. Macintosh: Formation, storage and release of acetylcholine at nerve endings. Canad. J. Biochem. 37: 343–356, 1959.PubMedCrossRefGoogle Scholar
  87. 87.
    P.L. McGeer, J.C. Eccles and E.G. McGeer: Molecular Neurobiology of Mammalion Brain. Plenum Publ. Corp., N.Y., 1978.CrossRefGoogle Scholar
  88. 88.
    D. Nachmansohn: Actions on axons, and evidence for the role of acetylcholine in axonal conduction. In: “Cholinesterases and Anticholinesterase Agents”. G.B. Koelle, ed., pp. 701–740, Handbch. d. Exper. Pharmakol. Erganzungswk. 15:701–740, Springer-Verlag, Berlin, 1963.Google Scholar
  89. 89.
    E.J. Nestler, S.I. Walaas and P. Greengard. Neuronal phosphoproteins: physiological and clinical implications. Science 225: 1357–1364, 1984.PubMedCrossRefGoogle Scholar
  90. 90.
    S. Nishi: Cholinergic and adrenergic receptors at sympathetic ganglionic terminals. Fed. Proc. 29: 1950–1965, 1970.Google Scholar
  91. 91.
    S. Nishi and K. Koketsu: Early and late after-discharges of amphibian sympathetic ganglion cells. J. Neurophysiol. 31: 109–121, 1968.PubMedGoogle Scholar
  92. 92.
    Y. Ohta, G.S. Karczmar and A.G. Karczmar: Phospholipids and amphibian neuromyal transmission. Eighth International Congr. of Pharmacol., Abstracts, p. 646, Tokyo IUPHAR Pubis., 1981.Google Scholar
  93. 93.
    J.W. Phillis and D.H. York: Cholinergic inhibition in the cerebral cortex. Brain Res. 5: 517–520, 1967.PubMedCrossRefGoogle Scholar
  94. 94.
    R.L. Polak: Effect of hyoscine on the output of acetylcholine into perfused cerebral ventricles of cats. J. Physiol. (Lond.) 181: 317–323, 1965.Google Scholar
  95. 95.
    K.R. Popper and J.C. Eccles: The self and its brain—an argument for interactionism. Springer International, Berlin, 1977.Google Scholar
  96. 96.
    M.A. Raftery, B.M. Conti-Tronconi and S.M.J. Dunn: Structural and functional aspects of the nicotinic receptor. Fund. Appl. Toxicol. 5: S39–S40, 1985.CrossRefGoogle Scholar
  97. 97.
    H.P. Rang and J.M. Ritter: On the mechanism of desensitization at cholinergic receptors. Mol. Pharmacol. 6: 394–441, 1969.Google Scholar
  98. 98.
    G.P. Richardson, K. Siddle and J.P. Luzio: Immunoaffinity purification of intact, metabolically active, cholinergic nerve terminals from mammalian brain. Biochem. J. 219: 647–654, 1984.PubMedGoogle Scholar
  99. 99.
    W.K. Riker and Z. Szreniawski: The pharmacological reactivity of presynaptic nerve terminals in a sympathetic ganglion. J. Pharmacol. Exp. Therap. 126: 233–238, 1959.Google Scholar
  100. 100.
    F. Rinaldi and H.E. Himwich: Alerting responses and actions of atropine and cholinergic drugs. A.M.A. Arch. Neurol. Psychiat. 73: 387–395, 1955.Google Scholar
  101. 101.
    M. Saito, G. Kindel, A-G. Karczmar and A. Rosenberg: Metabolism of choline in brain of the aged CBF-1 moúse. J. Neurosci. Res. 15: 197–209, 1986.PubMedCrossRefGoogle Scholar
  102. 102.
    O.E. Schotte and E.G. Butler: Morphological effects of denervation and amputation of limbs in urodele larvae. J. Exp. Zool. 87: 279–322, 1941.CrossRefGoogle Scholar
  103. 103.
    O.E. Schotte and A.G. Karczmar: Limb parameters and regression rates in denervated amputated limbs of urodele larvae. J. Exp. Zool. 97: 43–70, 1944.CrossRefGoogle Scholar
  104. 104.
    K. Sikora-VanMeter, T. Ellenberg and W.G. VanMeter: Neurotoxic changes in cat neurohypophysis after single and multiple exposure to DFP and Soman. Fund. Appl. Toxicol. 5: 1087–1096, 1985.CrossRefGoogle Scholar
  105. 105.
    M.M. Singh: Cholinergic mechanisms, adaptive brain processes and psychopathology. In: “Central Cholinergic Mechanisms and Adaptive Dysfunctions”. M.M. Singh, D.M. Warburton and H. Lai, eds., pp. 353–397, Plenum Publ. Corp., N.Y., 1985.CrossRefGoogle Scholar
  106. 106.
    F.G. Standaert and W.F. Riker, Jr.: The consequences of cholinergic drug actions on motor nerve terminals. Ann. N.Y. Acad. Sci. 144: 517–533, 1967.CrossRefGoogle Scholar
  107. 107.
    E.W. Sutherland, G.A. Robinson and R.W. Butcher: Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation 37: 279–306, 1968.Google Scholar
  108. 108.
    J.C. Szerb: Characterization of presynaptic muscarinic receptors in central cholinergic neurons. In: “Cholinergic Mechanisms and Psychopharmacology”. D.J. Jenden, ed., pp. 49–60, Plenum Publ. Corp., N.Y., 1977.Google Scholar
  109. 109.
    S. Thesleff: The mode of neuromuscular block caused by acetylcholine j nicotine, decamethonium and succinycholine. Acta Physiol. Scand. 34: 218–231, 1955.CrossRefGoogle Scholar
  110. 110.
    R.C. Thomas and V.J. Wilson: Precise location of Renshaw cells with a new marking technique. Nature 206: 211–213, 1965.PubMedCrossRefGoogle Scholar
  111. 111.
    S. Tucek: The synthesis of acetylcholine. In: “Enzymes in the Nervous System”. A. Lajtha, ed. 4:219–428, Plenum Publ. Corp., N.Y., 1983.Google Scholar
  112. 112.
    A.M. Turing: On computable numbers with an application to the Enscheidungproblem. Proc. Lond. Math. Soc., Ser. II, 43: 544–546, 1937.CrossRefGoogle Scholar
  113. 113.
    W.G. VanMeter, A.G. Karczmar and R.R. Fiscus: CNS effects of anticholinesterases in the presence of inhibited cholinesterases. Int. Arch. Pharmacodyn. Ther. 23: 249–260, 1978.Google Scholar
  114. 114.
    T.W. Vickroy, M. Watson, H.I. Yamamura and W.R. Roeske: Agonist binding to multiple muscarinic receptors. Fed. Proc. 43: 2785–2790, 1984.PubMedGoogle Scholar
  115. 115.
    L. Wecker: The utilization of supplemental choline by brain. In: “Conference on Dynamics of Cholinergic Function”. I. Hanin, ed., Plenum Press Corp., N.Y., 1986 (in press).Google Scholar
  116. 116.
    E. Zaimis: Actions at autonomic sites. In: “Cholinesterases and Anticholinesterase Agents”. G.B. Koelle, ed., Handbch. d. exper. Pharmakol. 15:530–569, Springer-Verlag, Berlin, 1963.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Alexander G. Karczmar
    • 1
  1. 1.Loyola University Stritch School of MedicineMaywoodUSA

Personalised recommendations