Skip to main content

Electroencephalographic Correlates of Nerve Agent Poisoning

  • Chapter
Neurobiology of Acetylcholine

Abstract

Convulsions and seizure activity are major signs of central nervous system (CNS) toxicity induced by organophosphorus (OP) anticholinesterases. Descriptions of the electroencephalographic (EEG) phenomena that accompany anticholinesterase (antiChE) poisoning can be traced back to the early 1940fs. Using the then relatively new technique for recording brain activity by electroencephalography, Miller et al. (1940) described the effect of direct application of several cholinergic drugs to cerebral cortex in anesthetized cats and rabbits. Although the EEG techniques utilized might be considered crude by contemporary standards, results from this early EEG study are consistent with our current understanding of the effects of antiChE drugs on the CNS. Three basic classes of EEG waves were described in this study: slow (1.3–10 Hz), fast (11–40 Hz) and “dot” waves (50–100 Hz). The so-called “dot” waves were named because of their appearance as slight discontinuities in the oscilloscope sweeps; apparently the electronic equipment of the time was too slow to accurately follow 50–100 Hz activity. The antiChE agent eserine sulfate (1% solution) produced three major effects on the EEG when applied directly to the cortex: 1) a decrease in amplitude of the slow waves, 2) a decrease in high amplitude fast waves, and 3) an apparent increase in smaller amplitude fast and “dot” wave activities. The description of these effects is generally consistent with the modern-day definition of EEG desynchronization or arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcava, Y. and Albuquerque, E.X., 1985, Direct interactions of reversible and irreversible cholinesterase (ChE) inhibitors with the acetylcholine receptor-ionic channel complex (AChR): Agonist activity and open channel blockade, Soc. Neurosci. Abstr., 11: 595.

    Google Scholar 

  • Avoli, M., Gloor, P., Kostopopulos, G. and Gotman, J., 1981, An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of the cortical and thalamic single neurons, J. Neurophysiol., 50: 819–837.

    Google Scholar 

  • Baghdoyan, H.A., Rodrigo-Angulo, N.L., McCarley, R.W. and Hobson, J.A., 1984, Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions, Brain Res., 306: 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Baker, W. W., and Benedict, F., 1968, Analysis of local discharges induced by intrahippocampal microinjection of carbachol or diisopropylfluorophosphate (DFP), Int. Neuropharmacol., 7: 135–147.

    Article  CAS  Google Scholar 

  • Bickford, R.G., 1977, Computer analysis of background activity, in: “EEG Informatics,” A. Redmond, ed., Elsvier, NY.

    Google Scholar 

  • Bokums, J.A., and Elliott, H.W., 1968, Effects of physostigmine on electrical activity of the cat brain, Pharmacol., 1: 98–11O.

    Article  CAS  Google Scholar 

  • Bradley, P.B., and Elkes, J., 1957, The effects of some drugs upon the electrical activity of the brain, Brain, 80: 77–117.

    Article  PubMed  CAS  Google Scholar 

  • Brezenoff, H.E., McGee, J. and Knight, V., 1984, The hypertensive response to soman and its relation to brain acetylcholinesterase inhibition, Acta Pharmacol, et Toxicol., 55: 270–277.

    Article  CAS  Google Scholar 

  • Brown, R.V., 1960, The effects of intracisternal sarin and pyridine-2-aldoxime methyl methanesulfonate in anesthetized dogs, Brit. J. Pharmacol., 15: 170–174.

    PubMed  CAS  Google Scholar 

  • Buccafusco, J.J., 1982, Mechanism of the clonidine-induced protection against acetylcholinesterase inhibitor toxicity, J. Pharmacol. Exp. Ther., 222: 595–599.

    PubMed  CAS  Google Scholar 

  • Burchfiel, J.L., Duffy, F.H., and Sim, V.M., 1976, Persistent effects of sarin and dieldrin upon the primate electroencephalogram, Toxicol. Appl. Pharmacol., 35: 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Burchfiel, J.L., and Duffy, F.H., 1982, Organophosphate neurotoxicity: Chronic effects of sarin on the electroencephalogram of monkey and man, Neurobehav. Toxicol. Teratol., 4: 767–778.

    PubMed  CAS  Google Scholar 

  • Caspers, H. and Speckman, E.J., 1972, Cerebral PO2, CO2 and pH: changes during convulsive activity and their significance for spontaneous arrest of seizure, Epilepsia, 13: 699–725.

    Article  PubMed  CAS  Google Scholar 

  • Chatfield, P.O. and Dempsey, E.W., 1942. Some effects of prostigmine and acetylcholine on cortical potentials, Amer. J. Physiol., 135: 633–64O.

    CAS  Google Scholar 

  • Chubb, I.W., Hodgson, A.J. and White, G.H., 1980, Acetylcholinesterase hydrolyzes substance P, Neurosci., 5: 2065–2072.

    Article  CAS  Google Scholar 

  • Clement, J.G., and Lee, M.J., 1980, Soman-induced convulsions: Significance of changes in levels of blood electrolytes, gases, glucose, and insulin, Toxicol. Appl. Pharmacol., 55: 203–204

    Article  PubMed  CAS  Google Scholar 

  • Cooke, P.M., and Sherwood, S.L., 1954, The effect of introduction of some drugs into the cerebral ventricles on the electrical activity of the brain of cats, EEG Clin. Neurophysiol., 6: 425–431.

    Article  CAS  Google Scholar 

  • Desmedt, J.E. and LaGrutta, G., 1955, Control of brain potentials by pseudocholinesterase, Physiol., 129: 46–47 P.

    CAS  Google Scholar 

  • Desmedt, J.E. and LaGrutta, G., 1957, The effect of selective inhibition of pseudocholinesterase on the spontaneous and evoked activity of the cat’s cerebral cortex, J. Physiol., 136: 20–4O.

    PubMed  CAS  Google Scholar 

  • Dixon, W.J., 1983, “BMDP Statistical Software,” U. Calif. Press, Berkeley.

    Google Scholar 

  • Drewes, L.R. and Singh, A.K., 1985, Cerebral metabolism and blood-brain barrier transport: toxicity of organophosphosphorus compounds, Fifth Ann. Chem. Def. Biosci. Rev., US Army Medical Research and Development Command.

    Google Scholar 

  • Duffy, F.H., Burchfiel J.L., Bartels, P.H., Gaon, M., and Sim, V.M., 1979, Long-term effects of an organophosphate upon the human electroencephalogram, Toxicol. Appl. Pharmacol., 47: 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Essig, C.F., Hampson, J.L., Bales, P.D., Willis, A. and Himwich, H.E., 1950, Effect of Panparnit on brain wave changes induced by diisopropyl fluorophosphate (DFP), Science, 111: 38–39.

    Article  PubMed  CAS  Google Scholar 

  • Etevenon, P. and Pidoux, B., 1977, From biparametric to multidimensional analysis of EEG, in “EEG Informatics,” A. Redmond, ed., Elsvier, NY.

    Google Scholar 

  • Fink, M., 1966, Cholinergic aspects of convulsive therapy, J. Ment Nerv. Pis., 24: 475–484.

    Article  Google Scholar 

  • Fink, M., 1974, EEG profiles and bioavailability measures of psychotrophic drugs, in “Psychotrophic Drugs and the Human EEG.”, T.M. Itil, ed., Modern Prob. Pharmacopsychiatr., 8: 76–98, Karger, Basel.

    Google Scholar 

  • Freedman, A.M., and Himwich, H.E., 1949, DFP: Site of injection and variation in response, Am. J. Physiol., 156: 125–128.

    PubMed  CAS  Google Scholar 

  • Gibbs, F.A., Lennox, W.G. and Gibbs, E.L., 1934, Cerebral blood flow preceding and accompanying epileptic seizures in man, Arch. Neurol. Psychiat., 2: 257–292.

    Google Scholar 

  • Glenn, J.F., Mcmaster, S., Marshall, N.K., Adams, N.L. and Hinman, D., 1985, Electroencephalographic studies of soman’s action in the cat, Fifth Ann. Chem. Def. Biosci. Rev., US Army Medical Research and Development Command.

    Google Scholar 

  • Gloor, P., Testa, G. and Guberman, A., 1973, Brain stem and cortical mechanisms in an animal model of generalized corticoreticular epilepsy, Trans. Am. Neurol. Assoc., 98: 203–205.

    PubMed  CAS  Google Scholar 

  • Grob, D. and Harvey, A.M., 1953, The effects and treatment of nerve gas poisoning, Amer. J. Med., 14: 52–63.

    Article  PubMed  CAS  Google Scholar 

  • Guberman, A. and Gloor, P., 1974, Cholinergic drug studies of generalized penicillin epilepsy in the cat, Brain Res., 78: 203–222.

    Article  PubMed  CAS  Google Scholar 

  • Halasz, P., 1982, Generalized epilepsy with spike-wave pattern (GESW) and intermediate states of sleep, in “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press, NY.

    Google Scholar 

  • Hampson, J.L., Essig, C.F., McCauley, A. and Himwich, H.E., 1950, Effects of diisopropyl fluorophosphate (DFP) on electroencephalogram and Cholinesterase activity, EEG Clin. Neurophysiol., 2: 41–48.

    Article  CAS  Google Scholar 

  • Harwood, C.T., 1954, Cholinesterase activity and electroencephalograms during circling induced by the intracarotid injection of diisopropyl fluorophosphate, Am. J. Physiol., 177: 171–174.

    PubMed  CAS  Google Scholar 

  • Hernandez-Peon, R., Rojas-Ramirez, J.A., O’Flaherty, J.J. and Mazzuchelli-O’Flaherty, A.L., 1964, An experimental study of the anticonvulsive and relaxant actions of valium, Int. J. Neuropharmacol., 3: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Hess, R., Urech, E. and Wieser, H.G., 1982, Arousal patterns in depth recording from epileptics, in “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press, NY.

    Google Scholar 

  • Himwich, H.E., Essig, C.F., Hampson, J.L., Bales, P.D., and Freedman, A.M., 1950, Effect of trimethadione (tridione) and other drugs on convulsions caused by diisopropylfluorophosphate (DFP), Am. J. Psychiatry, 106: 816–82O.

    PubMed  CAS  Google Scholar 

  • Holmes J.H., and Gaon, M.D., 1956, Observations on acute and multiple exposure to anticholinesterase agents, Trans. Amer. Clin. Climate. Assoc., 68: 86–101.

    Google Scholar 

  • Ilyutchenok, R.I., 1962, The role of cholinergic system of the brain stem reticular formation in the mechanism of central effects of anticholinesterases and cholinolytic drugs, Proc. First Int. Pharmacol. Meeting, 8: 211–216.

    Google Scholar 

  • Itil, T.M., 1974, Quantitative pharmacoelectroencephalography, in “Psychotrophic Drugs and the Human EEG.”, T.M. Itil, ed., Modern Prob. Pharmacopsychiatr., 8: 43–75, Karger, Basel.

    Google Scholar 

  • Kanai, T. and Szerb, J.C., 1965, Mesencephalic reticular activating system and cortical acetylcholine output, Nature, 205: 80–82.

    Article  PubMed  CAS  Google Scholar 

  • Karczmar, A.G., 1974, Brain acetylcholine and seizures, in “Psychobiology of Convulsive Therapy,” M. Fink, S. Kety, J, McGaugh and T.W. Williams, eds., V.H. Winston, NY.

    Google Scholar 

  • Karczmar, A.G., 1976, Central actions of acetylcholine, cholinomimetics, and related drugs, in “Biology of Cholinergic Function,” A.M. Goldberg and I. Hanin, eds., Raven Press, NY.

    Google Scholar 

  • Karczmar, A.G., Kim, K.C., VanMeter, W.G. and Blaber, L.C., 1966, Final report of subcontract #SU630505, in “Treatment for Refractory Anticholinesterases”, M.A. Mitz, E. Usdin and J.C. Goan, eds., U.S. Army Contract Report AD//802707, pp. 105–225.

    Google Scholar 

  • Koppanyi, T., Karczmar, A.G., and King, T.O., 1947, The mechanism of action of anticholinesterases, in: “Symp. Milit. Physiol. Milit. Establ. Res. & Develop. Digest Series No. 4”, pp 271–285.

    Google Scholar 

  • Koppanyi, T., Karczmar, A.G., and Sheatz, G.C., 1953, Correlation between pharmacological responses to benzylcholine, methacholine, and acetylcholine and activity of cholinesterases, J. Pharmacol. Exp. Ther., 107: 482–50O.

    PubMed  CAS  Google Scholar 

  • Koppanyi, T., and Karczmar, A.G., 1951, Contribution to the study of the mechanism of action of Cholinesterase inhibitors, J. Pharmacol. Exp. Ther., 101: 327–334.

    PubMed  CAS  Google Scholar 

  • Korsak, R.J., and Sato, M.M., 1977, Effects of chronic organophosphate pesticide exposure on the central nervous system, Clin. Toxicol., 11: 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos, G. and Gloor, P., 1982, A mechanism for spike-wave discharge in feline penicillin epilepsy and its relationship to spindle generation, in “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press: NY.

    Google Scholar 

  • Kostopoulos, G., Gloor, P., Pellegrini, A., and Gotman, J., 1981a, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: microphysiological features, Exp. Neurol., 73: 55–77.

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos, G., Gloor, Pellegrini, A. and Siatitsas, I., 1981b, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features, Exp. Neurol., 73: 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Krip, G. and Vazquez, J., 1971. Effects of diphenylhydantoin and cholinergic agents on the neuronally isolated cerebral cortex, EEG Clin. Neurophysiol., 30: 391–398.

    Article  CAS  Google Scholar 

  • Krnjevic, K., 1981, Acetylcholine as modulator of amino-acid-mediated synaptic transmission in “The Role of Peptides and Amino Acids as Neurotransmitters”, Alan R. Liss, NY.

    Google Scholar 

  • Krnjevic, K. and Silver, A., 1965, A histochemical study of cholinergic fibres in the cerebral cortex, J. Anat. (London), 99: 711–759.

    CAS  Google Scholar 

  • Laizzo, A. and Longo, V.S., 1977, EEG effects of cholinergic and anticholinergic drugs, EEG Clin. Neurophysiol., 7C: 7–22.

    Google Scholar 

  • Lipp, J.A., 1968, Cerebral electrical activity following soman administration, Arch, int. pharmacodyn. Ther., 175: 161–169.

    CAS  Google Scholar 

  • Lipp, J.A., 1972, Effect of diazepam upon soman-induced seizure activity and convulsions, EEG Clin. Neurophysiol., 32: 557–56O.

    Article  CAS  Google Scholar 

  • Lipp, J.A., 1973, Effect of benzodiazepine derivatives on soman-induced seizure activity and convulsions in the monkey, Arch, int. Pharmacodyn., 202: 244–251.

    CAS  Google Scholar 

  • Lipp, J.A., 1974, Effect of small doses of clonazepam upon soman-induced seizure activity and convulsions, Arch, int. pharmacodyn., 210: 49–54.

    CAS  Google Scholar 

  • Longo, V.G., 1962, “Electroencephalographic Atlas for Pharmacological Research,” Elsevier, NY.

    Google Scholar 

  • Longo, V.G., Nachmansohn, D. and Bovet, D., 1960, Aspects electroencephalographiques de l’antagonisme entre le iodomethylate de 2-pyridine aldoxime (PAM) et le methylflurorophosphate d’sopropyle (sarin), Arch, int. pharmacodyn. 123: 282–29O.

    CAS  Google Scholar 

  • Longo, V.G. and Silvestrini, 1957, Action of eserine and amphetamine on the electrical activity of the rabbit brain, Pharmacol. Exp. Ther., 120: 160–17O.

    CAS  Google Scholar 

  • Lundy, P.M. and Frew, R., 1984, Evidence of reduced uptake of convulsant in brain following prostaglandin E2, Prostaglandins, 27: 725–735.

    Article  PubMed  CAS  Google Scholar 

  • Lundy, P.M., Magor, G., and Shaw, R.K., 1978, Gamma aminobutyric acid metabolism in different areas of rat brain at the onset of soman-induced convulsions, Arch, int. pharmacodyn., 234: 64–73.

    CAS  Google Scholar 

  • Lundy, P.M., and Shaw, R.K., 1983, Modification of cholinergically induced convulsive activity and cyclic GMP levels in the CNS, Neuropharmacol., 22: 55–63.

    Article  CAS  Google Scholar 

  • Lynch, T.J., Stratton, C.S. and Glenn, J.F., 1985, Changes in brain PO2 during soman-induced seizures in the rat, Soc. Neurosci. Abstr., 11: 1262.

    Google Scholar 

  • Machne, S. and Unna, K.R.W., 1963, Actions at the central nervous system, in “Cholinesterases and Anticholinesterase Agents,” Vol. 15, Handbuch der Experimentellen Pharmakologie, Erganzungswk, pp. 679–700. Springer-Verlag, Berlin.

    Google Scholar 

  • de la Manche, I., Desroches, A., Bouchaud, C., and Lage, P., 1980, Electrocorticogrammes et effets histochimiques accompagnant chez le rat la reactivation des cholinesterases apres action dfun inhibiteur organophosphore, C.R. Acad. Sci. (Paris) (D), 291: 401–403.

    Google Scholar 

  • Martin, L.J., Doebler, J.A., Shih, T-M. and Anthony, A, 1985, Protective effect of diazepam pretreatment on soman-induced brain lesion formation, Brain Res., 325: 287–289.

    Article  PubMed  CAS  Google Scholar 

  • McDonough, J.H., Hackley, B.E., Cross, R., Samson, F., and Nelson, S., 1983, Brain regional glucose use during soman-induced seizures, Neurotoxicol., 4: 203–210.

    CAS  Google Scholar 

  • McLachlan, R.S., Avoli, M. and Gloor, P., 1984, Transition form spindles to generalized spike and wave discharges in the cat: simultaneous single-cell recordings in cortex and thalamus, Exp. Neurol., 85: 413–425.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, D.R. and Holmes, J.H., 1969, EEG, psychological and neurological alterations in humans with organophosphorus exposure, Toxicol. and Physiol., 160: 357–365.

    CAS  Google Scholar 

  • Miller, F.R., Stavraky, G.W., and Woonton, G.A., 1940, Effects of eserine, acetylcholine and atropine on the electrocorticogram, J. Neurophysiol., 3: 131–138.

    CAS  Google Scholar 

  • Neidermeyer, E., 1982, Petit mal primary generalized epilepsy and sleep, in “Sleep and Epilepsy,” M.B. Sterman, M. N. Shouse and P. Passouant, eds., Academic Press:NY.

    Google Scholar 

  • Olney, J.W., deGubareff, T. and Labruyere, J., 1983, Seizure-related brain damage induced by cholinergic agents, Nature, 301: 520–522.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, J.J., 1983, Non-cholinesterase effects of anticholinesterases, Prog. Molec. Biol., 8: 122–143.

    Google Scholar 

  • Osumi, Y., Fujiwara, H., Oishi, R., and Takaori, S., 1975, Central cholinergic activation by chlorfenvinphos, an organophosphate, in the rat, Japan. J. Pharmacol., 25: 47–54.

    Article  CAS  Google Scholar 

  • Pazdernik, T.L., Cross, R.S., Giesler, M., Samson, F.E. and Nelson, S.R., 1985, Changes in local cerebral glucose utilization induced by convulsants, Neurosci., 14: 823–835.

    Article  CAS  Google Scholar 

  • Phillis, J.W. and Chong, G.C., 1965, Acetylcholine release from the cerebral and cerebellar cortices: its role in cortical arousal, Nature, 207: 1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • Pinard, E., Tremblay, E., Ben-Ari, Y. and Seylaz, J., 1984, Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures, Neurosci., 13: 1039–1049.

    Article  CAS  Google Scholar 

  • Rieger, H, and Okonek, S., 1975, L’E.E.G. dans les intoxations par les inhibiteurs de la cholinesterase (insecticides organophosphores), Rev. EEG Clin. Neurophysiol., 5: 98–101.

    CAS  Google Scholar 

  • Rinaldi, F. and Himwich, H.E., 1955a, Drugs affecting psychotic behavior and the function of the mesodiencephalic activating system, Pis. Nerv. Sys., 16: 133–141.

    CAS  Google Scholar 

  • Rinaldi, F. and Himwich, H.E., 1955b, Alerting response and actions of atropine and cholinergic drugs, AMA Arch. Neurol. Psychi., 73: 387–395.

    CAS  Google Scholar 

  • Rump, S. and Edelwejn, Z., 1966, Effects of lignocaine on epileptiform patterns of bioelectrical activity of the rabbit’s brain due to diisopropyl phosphorofluoridate (DFP), Int. J. Neuropharmacol., 5: 401–403.

    Article  PubMed  CAS  Google Scholar 

  • Rump, S., Grudzinska, E. and Edelwejn, 1973, Effects of diazepam on epileptiform patterns of bioelectrical activity of the rabbit’s brain induced by fluostigmine, Neuropharmacol., 12: 813–817.

    Article  CAS  Google Scholar 

  • Shapiro, D.M. and Glasser, M., 1974, Measurement and comparison of EEC-drug effects, in “Psychotrophic Drugs and the Human EEG.”, T.M. Itil, ed., Modern Prob. Pharmacopsychiatr., 8: 327–349, Basel, Kargerc

    Google Scholar 

  • Shih, T.M., 1982, Time course effects of soman on acetylchoine and choline levels in discrete areas of the rat brain, Psychopharmacol., 78: 170–175.

    Article  CAS  Google Scholar 

  • Shute, C.C.D. and Lewis, P.R., 1963, Cholinesterase-containing systems of the brain of the rat, Nature, 199: 1160–1164.

    Article  PubMed  CAS  Google Scholar 

  • Siakotis, A.N., Filbert, M. and Hester, R., 1965, A specific radioisotopic assay for acetylcholinesterase and pseudocholinesterase in brain and plasma, Biochem. Med. 3: 1.

    Article  Google Scholar 

  • Smialowski, A., 1976, The influence of cholinomimetics on bioelectric activity of rabbit’s limbic system and behavior, Pol. Pharmacol. Pharm., 28: 19–26.

    CAS  Google Scholar 

  • Snider, R.S. and Niemer, W.T., 1961, A Stereotaxic Atlas of the Cat Brain, U. Chicago Press, Chicago.

    Google Scholar 

  • Szerb, J.C., 1967, Cortical acetylcholine release and electroencephalographic arousal, J. Physiol., 192: 329–343.

    PubMed  CAS  Google Scholar 

  • Tower, D.B. and McEachern, D., 1949, Acetylcholine cholinesterase activity in the cerebrospinal fluid of patients with epilepsy, Canad. J. Res., (E), 27: 120–130.

    Article  CAS  Google Scholar 

  • Traczyk, W., and Sadowski, B., 1962, Electrical activity of the “cerveau isole” during caudate nucleus stimulation and its modification by eserine and atropine, Ada. Physiol. Polon., 13: 447–457.

    Google Scholar 

  • Turski, W.A., Cavalheiro, E.A., Turski, L. and Kleinrok, Z., 1983, Intrahippocampal bethanechol in rats: behavioral, electroencephalographic and neuropathological correlates, Behav. Brain Res., 7: 361–37O.

    Article  PubMed  CAS  Google Scholar 

  • Ursin, R. and Sterman, M.B., 1981, A Manual for Standardized Scoring of Sleep and Waking States in the Adult Cat, Brain Information Service/Brain Research Service, U. California, Los Angeles

    Google Scholar 

  • Valdes, J.J., Chester, N.A., Menking, D., Shih, T-M. and Whalley, C., 1985, Regional sensitivity of neuroleptic receptors to sub-acute soman intoxication, Brain Res. Bull., 14: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • VanMeter, W.G., Karczmar, A.G., and Fiscus, R.R., 1978, CNS effects of anticholinesterases in the presence of inhibited cholinesterases, Arch, int. pharmacodyn., 231: 249–26O.

    CAS  Google Scholar 

  • Wescoe, W.C., Green, R.E., McNamara, B.P. and Krop, S., 1948, The influence of atropine and scopolamine on the central effects of DFP, J. Pharmacol. Exp. Ther., 92: 63–72.

    PubMed  CAS  Google Scholar 

  • Villablanca, H.J., 1967, Effects of atropine, eserine and adrenaline in cats with mesencephalic sections, Arch. Biol. Med. Exp., 3: 118–129.

    Google Scholar 

  • Votava, Z., Benesova, O., Bohdanecky, Z. and Grofova, O., 1968, Influence of atropine, scopolamine and benactyzine on the physostigmine arousal reaction in rabbits, Prog. Brain Res., 28: 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, A., 1952, Pharmacologic dissociation of behavior and EEG sleep patterns in dogs: Morphine, n-allyl normorphine and atropine, Proc. Soc. Exp. Biol. Med., 79: 261–265.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., and Domino, E.F., 1967, Cholinergic agonist-antagonist interactions on neocortical and limbic EEG activation, Int. Neuropharmacol., 6: 357–373.

    Article  CAS  Google Scholar 

  • Yarowsky, P., Fowlec, J.C., Taylor, G. and Weinreich, D., 1984, Noneholinesterase actions of an irreversible acetylcholinesterase inhibitor on synaptic transmission and membrane properties in autonomic ganglia, Cell. Molec. Neurobiol., 4: 351–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Glenn, J.F., Hinman, D.J., McMaster, S.B. (1987). Electroencephalographic Correlates of Nerve Agent Poisoning. In: Dun, N.J., Perlman, R.L. (eds) Neurobiology of Acetylcholine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5266-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5266-2_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5268-6

  • Online ISBN: 978-1-4684-5266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics