Electroencephalographic Correlates of Nerve Agent Poisoning

  • J. F. Glenn
  • D. J. Hinman
  • S. B. McMaster


Convulsions and seizure activity are major signs of central nervous system (CNS) toxicity induced by organophosphorus (OP) anticholinesterases. Descriptions of the electroencephalographic (EEG) phenomena that accompany anticholinesterase (antiChE) poisoning can be traced back to the early 1940fs. Using the then relatively new technique for recording brain activity by electroencephalography, Miller et al. (1940) described the effect of direct application of several cholinergic drugs to cerebral cortex in anesthetized cats and rabbits. Although the EEG techniques utilized might be considered crude by contemporary standards, results from this early EEG study are consistent with our current understanding of the effects of antiChE drugs on the CNS. Three basic classes of EEG waves were described in this study: slow (1.3–10 Hz), fast (11–40 Hz) and “dot” waves (50–100 Hz). The so-called “dot” waves were named because of their appearance as slight discontinuities in the oscilloscope sweeps; apparently the electronic equipment of the time was too slow to accurately follow 50–100 Hz activity. The antiChE agent eserine sulfate (1% solution) produced three major effects on the EEG when applied directly to the cortex: 1) a decrease in amplitude of the slow waves, 2) a decrease in high amplitude fast waves, and 3) an apparent increase in smaller amplitude fast and “dot” wave activities. The description of these effects is generally consistent with the modern-day definition of EEG desynchronization or arousal.


Seizure Activity Nerve Agent Arousal Response Mesencephalic Reticular Formation Local Cerebral Glucose Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcava, Y. and Albuquerque, E.X., 1985, Direct interactions of reversible and irreversible cholinesterase (ChE) inhibitors with the acetylcholine receptor-ionic channel complex (AChR): Agonist activity and open channel blockade, Soc. Neurosci. Abstr., 11: 595.Google Scholar
  2. Avoli, M., Gloor, P., Kostopopulos, G. and Gotman, J., 1981, An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of the cortical and thalamic single neurons, J. Neurophysiol., 50: 819–837.Google Scholar
  3. Baghdoyan, H.A., Rodrigo-Angulo, N.L., McCarley, R.W. and Hobson, J.A., 1984, Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions, Brain Res., 306: 39–52.PubMedCrossRefGoogle Scholar
  4. Baker, W. W., and Benedict, F., 1968, Analysis of local discharges induced by intrahippocampal microinjection of carbachol or diisopropylfluorophosphate (DFP), Int. Neuropharmacol., 7: 135–147.CrossRefGoogle Scholar
  5. Bickford, R.G., 1977, Computer analysis of background activity, in: “EEG Informatics,” A. Redmond, ed., Elsvier, NY.Google Scholar
  6. Bokums, J.A., and Elliott, H.W., 1968, Effects of physostigmine on electrical activity of the cat brain, Pharmacol., 1: 98–11O.CrossRefGoogle Scholar
  7. Bradley, P.B., and Elkes, J., 1957, The effects of some drugs upon the electrical activity of the brain, Brain, 80: 77–117.PubMedCrossRefGoogle Scholar
  8. Brezenoff, H.E., McGee, J. and Knight, V., 1984, The hypertensive response to soman and its relation to brain acetylcholinesterase inhibition, Acta Pharmacol, et Toxicol., 55: 270–277.CrossRefGoogle Scholar
  9. Brown, R.V., 1960, The effects of intracisternal sarin and pyridine-2-aldoxime methyl methanesulfonate in anesthetized dogs, Brit. J. Pharmacol., 15: 170–174.PubMedGoogle Scholar
  10. Buccafusco, J.J., 1982, Mechanism of the clonidine-induced protection against acetylcholinesterase inhibitor toxicity, J. Pharmacol. Exp. Ther., 222: 595–599.PubMedGoogle Scholar
  11. Burchfiel, J.L., Duffy, F.H., and Sim, V.M., 1976, Persistent effects of sarin and dieldrin upon the primate electroencephalogram, Toxicol. Appl. Pharmacol., 35: 365–379.PubMedCrossRefGoogle Scholar
  12. Burchfiel, J.L., and Duffy, F.H., 1982, Organophosphate neurotoxicity: Chronic effects of sarin on the electroencephalogram of monkey and man, Neurobehav. Toxicol. Teratol., 4: 767–778.PubMedGoogle Scholar
  13. Caspers, H. and Speckman, E.J., 1972, Cerebral PO2, CO2 and pH: changes during convulsive activity and their significance for spontaneous arrest of seizure, Epilepsia, 13: 699–725.PubMedCrossRefGoogle Scholar
  14. Chatfield, P.O. and Dempsey, E.W., 1942. Some effects of prostigmine and acetylcholine on cortical potentials, Amer. J. Physiol., 135: 633–64O.Google Scholar
  15. Chubb, I.W., Hodgson, A.J. and White, G.H., 1980, Acetylcholinesterase hydrolyzes substance P, Neurosci., 5: 2065–2072.CrossRefGoogle Scholar
  16. Clement, J.G., and Lee, M.J., 1980, Soman-induced convulsions: Significance of changes in levels of blood electrolytes, gases, glucose, and insulin, Toxicol. Appl. Pharmacol., 55: 203–204PubMedCrossRefGoogle Scholar
  17. Cooke, P.M., and Sherwood, S.L., 1954, The effect of introduction of some drugs into the cerebral ventricles on the electrical activity of the brain of cats, EEG Clin. Neurophysiol., 6: 425–431.CrossRefGoogle Scholar
  18. Desmedt, J.E. and LaGrutta, G., 1955, Control of brain potentials by pseudocholinesterase, Physiol., 129: 46–47 P.Google Scholar
  19. Desmedt, J.E. and LaGrutta, G., 1957, The effect of selective inhibition of pseudocholinesterase on the spontaneous and evoked activity of the cat’s cerebral cortex, J. Physiol., 136: 20–4O.PubMedGoogle Scholar
  20. Dixon, W.J., 1983, “BMDP Statistical Software,” U. Calif. Press, Berkeley.Google Scholar
  21. Drewes, L.R. and Singh, A.K., 1985, Cerebral metabolism and blood-brain barrier transport: toxicity of organophosphosphorus compounds, Fifth Ann. Chem. Def. Biosci. Rev., US Army Medical Research and Development Command.Google Scholar
  22. Duffy, F.H., Burchfiel J.L., Bartels, P.H., Gaon, M., and Sim, V.M., 1979, Long-term effects of an organophosphate upon the human electroencephalogram, Toxicol. Appl. Pharmacol., 47: 161–176.PubMedCrossRefGoogle Scholar
  23. Essig, C.F., Hampson, J.L., Bales, P.D., Willis, A. and Himwich, H.E., 1950, Effect of Panparnit on brain wave changes induced by diisopropyl fluorophosphate (DFP), Science, 111: 38–39.PubMedCrossRefGoogle Scholar
  24. Etevenon, P. and Pidoux, B., 1977, From biparametric to multidimensional analysis of EEG, in “EEG Informatics,” A. Redmond, ed., Elsvier, NY.Google Scholar
  25. Fink, M., 1966, Cholinergic aspects of convulsive therapy, J. Ment Nerv. Pis., 24: 475–484.CrossRefGoogle Scholar
  26. Fink, M., 1974, EEG profiles and bioavailability measures of psychotrophic drugs, in “Psychotrophic Drugs and the Human EEG.”, T.M. Itil, ed., Modern Prob. Pharmacopsychiatr., 8: 76–98, Karger, Basel.Google Scholar
  27. Freedman, A.M., and Himwich, H.E., 1949, DFP: Site of injection and variation in response, Am. J. Physiol., 156: 125–128.PubMedGoogle Scholar
  28. Gibbs, F.A., Lennox, W.G. and Gibbs, E.L., 1934, Cerebral blood flow preceding and accompanying epileptic seizures in man, Arch. Neurol. Psychiat., 2: 257–292.Google Scholar
  29. Glenn, J.F., Mcmaster, S., Marshall, N.K., Adams, N.L. and Hinman, D., 1985, Electroencephalographic studies of soman’s action in the cat, Fifth Ann. Chem. Def. Biosci. Rev., US Army Medical Research and Development Command.Google Scholar
  30. Gloor, P., Testa, G. and Guberman, A., 1973, Brain stem and cortical mechanisms in an animal model of generalized corticoreticular epilepsy, Trans. Am. Neurol. Assoc., 98: 203–205.PubMedGoogle Scholar
  31. Grob, D. and Harvey, A.M., 1953, The effects and treatment of nerve gas poisoning, Amer. J. Med., 14: 52–63.PubMedCrossRefGoogle Scholar
  32. Guberman, A. and Gloor, P., 1974, Cholinergic drug studies of generalized penicillin epilepsy in the cat, Brain Res., 78: 203–222.PubMedCrossRefGoogle Scholar
  33. Halasz, P., 1982, Generalized epilepsy with spike-wave pattern (GESW) and intermediate states of sleep, in “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press, NY.Google Scholar
  34. Hampson, J.L., Essig, C.F., McCauley, A. and Himwich, H.E., 1950, Effects of diisopropyl fluorophosphate (DFP) on electroencephalogram and Cholinesterase activity, EEG Clin. Neurophysiol., 2: 41–48.CrossRefGoogle Scholar
  35. Harwood, C.T., 1954, Cholinesterase activity and electroencephalograms during circling induced by the intracarotid injection of diisopropyl fluorophosphate, Am. J. Physiol., 177: 171–174.PubMedGoogle Scholar
  36. Hernandez-Peon, R., Rojas-Ramirez, J.A., O’Flaherty, J.J. and Mazzuchelli-O’Flaherty, A.L., 1964, An experimental study of the anticonvulsive and relaxant actions of valium, Int. J. Neuropharmacol., 3: 405–412.PubMedCrossRefGoogle Scholar
  37. Hess, R., Urech, E. and Wieser, H.G., 1982, Arousal patterns in depth recording from epileptics, in “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press, NY.Google Scholar
  38. Himwich, H.E., Essig, C.F., Hampson, J.L., Bales, P.D., and Freedman, A.M., 1950, Effect of trimethadione (tridione) and other drugs on convulsions caused by diisopropylfluorophosphate (DFP), Am. J. Psychiatry, 106: 816–82O.PubMedGoogle Scholar
  39. Holmes J.H., and Gaon, M.D., 1956, Observations on acute and multiple exposure to anticholinesterase agents, Trans. Amer. Clin. Climate. Assoc., 68: 86–101.Google Scholar
  40. Ilyutchenok, R.I., 1962, The role of cholinergic system of the brain stem reticular formation in the mechanism of central effects of anticholinesterases and cholinolytic drugs, Proc. First Int. Pharmacol. Meeting, 8: 211–216.Google Scholar
  41. Itil, T.M., 1974, Quantitative pharmacoelectroencephalography, in “Psychotrophic Drugs and the Human EEG.”, T.M. Itil, ed., Modern Prob. Pharmacopsychiatr., 8: 43–75, Karger, Basel.Google Scholar
  42. Kanai, T. and Szerb, J.C., 1965, Mesencephalic reticular activating system and cortical acetylcholine output, Nature, 205: 80–82.PubMedCrossRefGoogle Scholar
  43. Karczmar, A.G., 1974, Brain acetylcholine and seizures, in “Psychobiology of Convulsive Therapy,” M. Fink, S. Kety, J, McGaugh and T.W. Williams, eds., V.H. Winston, NY.Google Scholar
  44. Karczmar, A.G., 1976, Central actions of acetylcholine, cholinomimetics, and related drugs, in “Biology of Cholinergic Function,” A.M. Goldberg and I. Hanin, eds., Raven Press, NY.Google Scholar
  45. Karczmar, A.G., Kim, K.C., VanMeter, W.G. and Blaber, L.C., 1966, Final report of subcontract #SU630505, in “Treatment for Refractory Anticholinesterases”, M.A. Mitz, E. Usdin and J.C. Goan, eds., U.S. Army Contract Report AD//802707, pp. 105–225.Google Scholar
  46. Koppanyi, T., Karczmar, A.G., and King, T.O., 1947, The mechanism of action of anticholinesterases, in: “Symp. Milit. Physiol. Milit. Establ. Res. & Develop. Digest Series No. 4”, pp 271–285.Google Scholar
  47. Koppanyi, T., Karczmar, A.G., and Sheatz, G.C., 1953, Correlation between pharmacological responses to benzylcholine, methacholine, and acetylcholine and activity of cholinesterases, J. Pharmacol. Exp. Ther., 107: 482–50O.PubMedGoogle Scholar
  48. Koppanyi, T., and Karczmar, A.G., 1951, Contribution to the study of the mechanism of action of Cholinesterase inhibitors, J. Pharmacol. Exp. Ther., 101: 327–334.PubMedGoogle Scholar
  49. Korsak, R.J., and Sato, M.M., 1977, Effects of chronic organophosphate pesticide exposure on the central nervous system, Clin. Toxicol., 11: 83–95.PubMedCrossRefGoogle Scholar
  50. Kostopoulos, G. and Gloor, P., 1982, A mechanism for spike-wave discharge in feline penicillin epilepsy and its relationship to spindle generation, in “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press: NY.Google Scholar
  51. Kostopoulos, G., Gloor, P., Pellegrini, A., and Gotman, J., 1981a, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: microphysiological features, Exp. Neurol., 73: 55–77.PubMedCrossRefGoogle Scholar
  52. Kostopoulos, G., Gloor, Pellegrini, A. and Siatitsas, I., 1981b, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features, Exp. Neurol., 73: 43–54.PubMedCrossRefGoogle Scholar
  53. Krip, G. and Vazquez, J., 1971. Effects of diphenylhydantoin and cholinergic agents on the neuronally isolated cerebral cortex, EEG Clin. Neurophysiol., 30: 391–398.CrossRefGoogle Scholar
  54. Krnjevic, K., 1981, Acetylcholine as modulator of amino-acid-mediated synaptic transmission in “The Role of Peptides and Amino Acids as Neurotransmitters”, Alan R. Liss, NY.Google Scholar
  55. Krnjevic, K. and Silver, A., 1965, A histochemical study of cholinergic fibres in the cerebral cortex, J. Anat. (London), 99: 711–759.Google Scholar
  56. Laizzo, A. and Longo, V.S., 1977, EEG effects of cholinergic and anticholinergic drugs, EEG Clin. Neurophysiol., 7C: 7–22.Google Scholar
  57. Lipp, J.A., 1968, Cerebral electrical activity following soman administration, Arch, int. pharmacodyn. Ther., 175: 161–169.Google Scholar
  58. Lipp, J.A., 1972, Effect of diazepam upon soman-induced seizure activity and convulsions, EEG Clin. Neurophysiol., 32: 557–56O.CrossRefGoogle Scholar
  59. Lipp, J.A., 1973, Effect of benzodiazepine derivatives on soman-induced seizure activity and convulsions in the monkey, Arch, int. Pharmacodyn., 202: 244–251.Google Scholar
  60. Lipp, J.A., 1974, Effect of small doses of clonazepam upon soman-induced seizure activity and convulsions, Arch, int. pharmacodyn., 210: 49–54.Google Scholar
  61. Longo, V.G., 1962, “Electroencephalographic Atlas for Pharmacological Research,” Elsevier, NY.Google Scholar
  62. Longo, V.G., Nachmansohn, D. and Bovet, D., 1960, Aspects electroencephalographiques de l’antagonisme entre le iodomethylate de 2-pyridine aldoxime (PAM) et le methylflurorophosphate d’sopropyle (sarin), Arch, int. pharmacodyn. 123: 282–29O.Google Scholar
  63. Longo, V.G. and Silvestrini, 1957, Action of eserine and amphetamine on the electrical activity of the rabbit brain, Pharmacol. Exp. Ther., 120: 160–17O.Google Scholar
  64. Lundy, P.M. and Frew, R., 1984, Evidence of reduced uptake of convulsant in brain following prostaglandin E2, Prostaglandins, 27: 725–735.PubMedCrossRefGoogle Scholar
  65. Lundy, P.M., Magor, G., and Shaw, R.K., 1978, Gamma aminobutyric acid metabolism in different areas of rat brain at the onset of soman-induced convulsions, Arch, int. pharmacodyn., 234: 64–73.Google Scholar
  66. Lundy, P.M., and Shaw, R.K., 1983, Modification of cholinergically induced convulsive activity and cyclic GMP levels in the CNS, Neuropharmacol., 22: 55–63.CrossRefGoogle Scholar
  67. Lynch, T.J., Stratton, C.S. and Glenn, J.F., 1985, Changes in brain PO2 during soman-induced seizures in the rat, Soc. Neurosci. Abstr., 11: 1262.Google Scholar
  68. Machne, S. and Unna, K.R.W., 1963, Actions at the central nervous system, in “Cholinesterases and Anticholinesterase Agents,” Vol. 15, Handbuch der Experimentellen Pharmakologie, Erganzungswk, pp. 679–700. Springer-Verlag, Berlin.Google Scholar
  69. de la Manche, I., Desroches, A., Bouchaud, C., and Lage, P., 1980, Electrocorticogrammes et effets histochimiques accompagnant chez le rat la reactivation des cholinesterases apres action dfun inhibiteur organophosphore, C.R. Acad. Sci. (Paris) (D), 291: 401–403.Google Scholar
  70. Martin, L.J., Doebler, J.A., Shih, T-M. and Anthony, A, 1985, Protective effect of diazepam pretreatment on soman-induced brain lesion formation, Brain Res., 325: 287–289.PubMedCrossRefGoogle Scholar
  71. McDonough, J.H., Hackley, B.E., Cross, R., Samson, F., and Nelson, S., 1983, Brain regional glucose use during soman-induced seizures, Neurotoxicol., 4: 203–210.Google Scholar
  72. McLachlan, R.S., Avoli, M. and Gloor, P., 1984, Transition form spindles to generalized spike and wave discharges in the cat: simultaneous single-cell recordings in cortex and thalamus, Exp. Neurol., 85: 413–425.PubMedCrossRefGoogle Scholar
  73. Metcalf, D.R. and Holmes, J.H., 1969, EEG, psychological and neurological alterations in humans with organophosphorus exposure, Toxicol. and Physiol., 160: 357–365.Google Scholar
  74. Miller, F.R., Stavraky, G.W., and Woonton, G.A., 1940, Effects of eserine, acetylcholine and atropine on the electrocorticogram, J. Neurophysiol., 3: 131–138.Google Scholar
  75. Neidermeyer, E., 1982, Petit mal primary generalized epilepsy and sleep, in “Sleep and Epilepsy,” M.B. Sterman, M. N. Shouse and P. Passouant, eds., Academic Press:NY.Google Scholar
  76. Olney, J.W., deGubareff, T. and Labruyere, J., 1983, Seizure-related brain damage induced by cholinergic agents, Nature, 301: 520–522.PubMedCrossRefGoogle Scholar
  77. O’Neill, J.J., 1983, Non-cholinesterase effects of anticholinesterases, Prog. Molec. Biol., 8: 122–143.Google Scholar
  78. Osumi, Y., Fujiwara, H., Oishi, R., and Takaori, S., 1975, Central cholinergic activation by chlorfenvinphos, an organophosphate, in the rat, Japan. J. Pharmacol., 25: 47–54.CrossRefGoogle Scholar
  79. Pazdernik, T.L., Cross, R.S., Giesler, M., Samson, F.E. and Nelson, S.R., 1985, Changes in local cerebral glucose utilization induced by convulsants, Neurosci., 14: 823–835.CrossRefGoogle Scholar
  80. Phillis, J.W. and Chong, G.C., 1965, Acetylcholine release from the cerebral and cerebellar cortices: its role in cortical arousal, Nature, 207: 1253–1255.PubMedCrossRefGoogle Scholar
  81. Pinard, E., Tremblay, E., Ben-Ari, Y. and Seylaz, J., 1984, Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures, Neurosci., 13: 1039–1049.CrossRefGoogle Scholar
  82. Rieger, H, and Okonek, S., 1975, L’E.E.G. dans les intoxations par les inhibiteurs de la cholinesterase (insecticides organophosphores), Rev. EEG Clin. Neurophysiol., 5: 98–101.Google Scholar
  83. Rinaldi, F. and Himwich, H.E., 1955a, Drugs affecting psychotic behavior and the function of the mesodiencephalic activating system, Pis. Nerv. Sys., 16: 133–141.Google Scholar
  84. Rinaldi, F. and Himwich, H.E., 1955b, Alerting response and actions of atropine and cholinergic drugs, AMA Arch. Neurol. Psychi., 73: 387–395.Google Scholar
  85. Rump, S. and Edelwejn, Z., 1966, Effects of lignocaine on epileptiform patterns of bioelectrical activity of the rabbit’s brain due to diisopropyl phosphorofluoridate (DFP), Int. J. Neuropharmacol., 5: 401–403.PubMedCrossRefGoogle Scholar
  86. Rump, S., Grudzinska, E. and Edelwejn, 1973, Effects of diazepam on epileptiform patterns of bioelectrical activity of the rabbit’s brain induced by fluostigmine, Neuropharmacol., 12: 813–817.CrossRefGoogle Scholar
  87. Shapiro, D.M. and Glasser, M., 1974, Measurement and comparison of EEC-drug effects, in “Psychotrophic Drugs and the Human EEG.”, T.M. Itil, ed., Modern Prob. Pharmacopsychiatr., 8: 327–349, Basel, KargercGoogle Scholar
  88. Shih, T.M., 1982, Time course effects of soman on acetylchoine and choline levels in discrete areas of the rat brain, Psychopharmacol., 78: 170–175.CrossRefGoogle Scholar
  89. Shute, C.C.D. and Lewis, P.R., 1963, Cholinesterase-containing systems of the brain of the rat, Nature, 199: 1160–1164.PubMedCrossRefGoogle Scholar
  90. Siakotis, A.N., Filbert, M. and Hester, R., 1965, A specific radioisotopic assay for acetylcholinesterase and pseudocholinesterase in brain and plasma, Biochem. Med. 3: 1.CrossRefGoogle Scholar
  91. Smialowski, A., 1976, The influence of cholinomimetics on bioelectric activity of rabbit’s limbic system and behavior, Pol. Pharmacol. Pharm., 28: 19–26.Google Scholar
  92. Snider, R.S. and Niemer, W.T., 1961, A Stereotaxic Atlas of the Cat Brain, U. Chicago Press, Chicago.Google Scholar
  93. Szerb, J.C., 1967, Cortical acetylcholine release and electroencephalographic arousal, J. Physiol., 192: 329–343.PubMedGoogle Scholar
  94. Tower, D.B. and McEachern, D., 1949, Acetylcholine cholinesterase activity in the cerebrospinal fluid of patients with epilepsy, Canad. J. Res., (E), 27: 120–130.CrossRefGoogle Scholar
  95. Traczyk, W., and Sadowski, B., 1962, Electrical activity of the “cerveau isole” during caudate nucleus stimulation and its modification by eserine and atropine, Ada. Physiol. Polon., 13: 447–457.Google Scholar
  96. Turski, W.A., Cavalheiro, E.A., Turski, L. and Kleinrok, Z., 1983, Intrahippocampal bethanechol in rats: behavioral, electroencephalographic and neuropathological correlates, Behav. Brain Res., 7: 361–37O.PubMedCrossRefGoogle Scholar
  97. Ursin, R. and Sterman, M.B., 1981, A Manual for Standardized Scoring of Sleep and Waking States in the Adult Cat, Brain Information Service/Brain Research Service, U. California, Los AngelesGoogle Scholar
  98. Valdes, J.J., Chester, N.A., Menking, D., Shih, T-M. and Whalley, C., 1985, Regional sensitivity of neuroleptic receptors to sub-acute soman intoxication, Brain Res. Bull., 14: 117–121.PubMedCrossRefGoogle Scholar
  99. VanMeter, W.G., Karczmar, A.G., and Fiscus, R.R., 1978, CNS effects of anticholinesterases in the presence of inhibited cholinesterases, Arch, int. pharmacodyn., 231: 249–26O.Google Scholar
  100. Wescoe, W.C., Green, R.E., McNamara, B.P. and Krop, S., 1948, The influence of atropine and scopolamine on the central effects of DFP, J. Pharmacol. Exp. Ther., 92: 63–72.PubMedGoogle Scholar
  101. Villablanca, H.J., 1967, Effects of atropine, eserine and adrenaline in cats with mesencephalic sections, Arch. Biol. Med. Exp., 3: 118–129.Google Scholar
  102. Votava, Z., Benesova, O., Bohdanecky, Z. and Grofova, O., 1968, Influence of atropine, scopolamine and benactyzine on the physostigmine arousal reaction in rabbits, Prog. Brain Res., 28: 40–47.PubMedCrossRefGoogle Scholar
  103. Wikler, A., 1952, Pharmacologic dissociation of behavior and EEG sleep patterns in dogs: Morphine, n-allyl normorphine and atropine, Proc. Soc. Exp. Biol. Med., 79: 261–265.PubMedGoogle Scholar
  104. Yamamoto, K., and Domino, E.F., 1967, Cholinergic agonist-antagonist interactions on neocortical and limbic EEG activation, Int. Neuropharmacol., 6: 357–373.CrossRefGoogle Scholar
  105. Yarowsky, P., Fowlec, J.C., Taylor, G. and Weinreich, D., 1984, Noneholinesterase actions of an irreversible acetylcholinesterase inhibitor on synaptic transmission and membrane properties in autonomic ganglia, Cell. Molec. Neurobiol., 4: 351–366.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. F. Glenn
    • 1
  • D. J. Hinman
    • 1
  • S. B. McMaster
    • 1
  1. 1.Neurotoxicology Branch Physiology DivisionU.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundUSA

Personalised recommendations