Influence of Frontal Decortication on Drugs Affecting Striatal Cholinergic Activity and Cataleptic Behavior: Restoration Studies

  • Herbert Ladinsky
  • Silvana Consolo
  • Gianluigi Forloni
  • Francesco Fiorentini
  • Gilberto Fisone


The striatum, and more generally the basal ganglia, stand out as having an extremely rich content of putative neurotransmitters as compared with many other parts of the brain. Acetylcholine (ACh) and GABA are found in cell bodies intrinsic to the area but a number of other transmitters are known to be associated with afferent pathways leading into the striatum. These include dopamine and serotonin localized, respectively, in the nigroneostriatal neurons and in the afferents from the dorsal raphe nucleus, noradrenaline, associated with the locus coeruleus input, and GABA, associated with the globus pallidus projections1.


Cholinergic Neuron Dorsal Raphe Nucleus Ergot Alkaloid Choline Chloride Muscarinic Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Emson, ed., Chemical Neuroanatomy. Raven Press, New York (1983).Google Scholar
  2. 2.
    R. Hassler, J.W. Chung, U. Rinne, and A. Wagner, Selective degeneration of two out of the nine types of synapses in cat caudate nucleus after cortical lesions. Exp. Brain Res. 31: 67–80 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Kimura, P.L. McGeer, F. Peng, and E.G. McGeer, Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208: 1057–1059 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    P.L. Wood, F. Moroni, D.L. Cheney, and E. Costa, Cortical lesions modulate turnover rates of acetylcholine and γ-aminobutyric acid. Neurosci. Lett. 12: 349–354 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    J.R. Simon, Cortical modulation of cholinergic neurons in the striatum. Life Sci. 31: 1501–1508 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Lehmann, and B. Scatton, Characterization of the excitatory amino acid receptor-mediated release of [3H]acetylcholine from rat striatal slices. Brain Res. 252: 77–89 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    J.K. Saelens, M.P. Allen, and J.P. Simke, Determination of acetylcholine and choline by an enzymatic assay. Arch. Int. Pharmacodyn. Ther. 186: 279–286 (1970).PubMedGoogle Scholar
  8. 8.
    H. Ladinsky, S. Consolo, S. Bianchi, R. Samanin, and D. Ghezzi, Cholinergic-dopaminergic interaction in the striatum: The effect of 6-hydroxy-dopamine or pimozide treatment on the increased striatal acetylcholine levels induced by apomorphine, piribedil and d-amphetamine. Brain Res. 84: 221–226 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Racagni, M. Trabucchi, and D.L. Cheney, Steady-state concentrations of choline and acetylcholine in rat brain parts during a constant rate infusion of deuterated choline. Naunyn Schmiedebergs Arch. Pharmacol. 290: 99–105 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Vezzani, A. Zatta, H. Ladinsky, S. Caccia, S. Garattini, and S. Consolo, Effect of dimethylamino-2-ethoxyimino-2-adamantane (CM 54903), a non-polar dimethylaminoethanol analog, on brain regional cholinergic neurochemical parameters. Biochem. Pharmacol. 31: 1693–1698 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Fonnum, A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24: 407–409 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    M.W. McCaman, L.R. Tomey, and R.E. McCaman, Radiomimetric assay of acetylcholinesterase activity in submicrogram amounts of tissue. Life Sci. 7: 233–244 (1968).PubMedCrossRefGoogle Scholar
  13. 13.
    P.M. Laduron, M. Verwimp, and J.E. Leysen, Stereospecific in vitro binding of [3H]dexetimide to brain muscarinic receptors. J. Neurochem. 32: 421–427 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Keller, A. Oke, I. Mefford, and R.N. Adams, Liquid chromatographic analysis of catecholamines: Routine assay for regional brain mapping. Life Sci. 19: 995–1004 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Ponzio, and G. Jonsson, A rapid and simple method for the determination of picogram levels of serotonin in brain tissue using liquid chromatography with electrochemical detection. J. Neurochem. 32: 129–132 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    J.F.R. Konig, and R.A. Klippel, The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. Williams & Wilkins, Baltimore (1963).Google Scholar
  17. 17.
    S. Consolo, M. Sieklucka, F. Fiorentini, G. Forloni, and H. Ladinsky, Frontal decortication and adaptive changes in striatal cholinergic neurons in the rat. Brain Res., in press.Google Scholar
  18. 18.
    I. Divac, F. Fonnum, and J. Storm-Mathisen, High affinity uptake of glutamate in terminals of corticostriatal axons. Nature 266: 377–378 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Worms, B. Scatton, M.-T. Willigens, A. Oblin, and K.G. Lloyd, Cortical influences on striatal function, in: “Psychopharmacology of the Limbic System”, M. Trimble, and E. Zarifian, eds., Oxford University Press, Oxford, pp. 68–75 (1984).Google Scholar
  20. 20.
    H. Ladinsky, S. Consolo, and P. Pugnetti, A possible central muscarinic receptor agonist role for choline in increasing rat striatal acetylcholine content, in: “Nutrition and the Brain”, vol. 5, A. Barbeau, J.H. Growdon, and R.J. Wurtman, eds., Raven Press, New York, pp. 227–241 (1979).Google Scholar
  21. 21.
    I.H. Ulus, R.J. Wurtman, M.C. Scally, and M.J. Hirsch, Effect of choline on cholinergic function, in: “Cholinergic Mechanisms and Psychopharmacology”, D.J. Jenden, ed., Plenum Press, New York, pp. 525–538 (1978).Google Scholar
  22. 22.
    A.M. Graybiel, and C.W. Ragsdale Jr., Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl. Acad. Sci. USA 75: 5723–5726 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    S.D. Iverseri, S. Wilkinson, and B. Simpson, Enhanced amphetamine responses after frontal cortex lesions in the rat. Eur. J. Pharmacol. 13: 387–390 (1971).CrossRefGoogle Scholar
  24. 24.
    B. Scatton, P. Worms, K.G. Lloyd, and G. Bartholini, Cortical modulation of striatal function. Brain Res. 232: 331–343 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Dunstan, C.L. Broekkamp, and K.G. Lloyd, Involvement of caudate nucleus, amygdala or reticular formation in neuroleptic and narcotic catalepsy. Pharmacol. Biochem. Behav. 14: 169–174 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    K.G. Lloyd, M.T. Willigens, and P. Worms, Cortical lesions differently affect neuroleptic-and non-neuroleptic induced catalepsy in rats. Br. J. Pharmacol. 74: 821P (1981).Google Scholar
  27. 27.
    B. Costall, and R.J. Naylor, Neuroleptic and non-neuroleptic catalepsy. Arzneimittelforsch. 23: 674–683 (1973).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Herbert Ladinsky
    • 1
  • Silvana Consolo
    • 1
  • Gianluigi Forloni
    • 1
  • Francesco Fiorentini
    • 1
  • Gilberto Fisone
    • 1
  1. 1.Istituto di Ricerche Farmacologiche “Mario Negri”MilanItaly

Personalised recommendations