Characteristics of Cholinergic Synapses in Neuroblastoma Myotube Co-Cultures

  • Michael Adler
  • Sharon Reutter
  • Sharad S. Deshpande
  • C. Sue Hudson
  • Margaret G. Filbert


Cultures of continuous cell lines have proved useful for studying excitation-secretion coupling. Such cell lines enable the investigator to perform both biochemical and electrophysiological experiments on a relatively homogeneous cell population and to manipulate the state of cellular differentiation by suitable alterations of culture conditions. Among the better characterized cell lines are those derived from the C-1300 neuroblastoma tumor (Augusti-Tocco and Sato, 1969). A number of cholinergic and adrenergic clones have been isolated from this murine tumor. They were shown to synthesize, store and release the appropriate neurotransmitters and to generate action potentials following electrical stimulation. Fusion of the neuroblastoma clone N18TG-2 with the glioma cell line C6BU-1 has yielded the hybrid NG108-15 (Amano et al., 1974) with enhanced electrical excitability and the ability to form nicotinic cholinergic synapses when co-cultured with primary or clonal myotubes (Nelson et al., 1976; Christian et al., 1977).


AChE Activity Decay Time Constant Adult Skeletal Muscle Quantal Release Osmotic Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, M. and Chang, F.-C. T., 1985, Role of acetylcholinesterase in cholinergic synaptic transmission, in: Abstracts: Fifth Annual Chemical Defense Bioscience Review (USAMRDC) p. 85.Google Scholar
  2. Adler, M., Chang, F.-C. T., Maxwell, D., Mark, G., Glenn, J. F., and Foster, R. E., 1986 (in press), Effect of diisopropylfluorophosphate on synaptic transmission and acetylcholine sensitivity in neuroblast oma-myo tube co-culture, in: Dynamics of Cholinergic Function I. Hanin, ed., Plenum Press, New York.Google Scholar
  3. Amano, T., Hamprecht, B., and Kemper, W., 1974, High activity of choline acetyltransferase induced in neuroblastoma x glia hybrid cells, Exp. Cell Res., 85: 339.Google Scholar
  4. Atlas, D. and Adler, M., 1981, (Adrenergic antagonists as possible calcium channel inhibitors, Proc. Natl. Acad. Sei. USA, 78: 1237.Google Scholar
  5. Augusti-Tocco, G. and Sato, G., 1969, Establishment of functional clonal lines of neurons from mouse neuroblastoma, Proc. Natl. Acad. Sei., 64: 311.Google Scholar
  6. Betz, W., 1976, The formation of synapses between chick embryo skeletal muscle and ciliary ganglia grown in vitro, J. Physiol., 254: 63.PubMedGoogle Scholar
  7. Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72: 248.Google Scholar
  8. Ceccarelli, B. and Hurlbut, W. P., 1980, Vesicle hypothesis of the release of quanta of acetylcholine, Phys. Rev., 60: 396Google Scholar
  9. Chang, F.-C. T. and Adler, M., 1985, Acetylcholinesterase in clonal nicotinic synaptic transmission, Soc. Neurosci. Abstr., 11: 304.Google Scholar
  10. Christian, C. N., Nelson, P. G., Peacock, J., and Nirenberg, M., 1977, Synapse formation between two clonal lines, Science, 196: 995.PubMedCrossRefGoogle Scholar
  11. Christian, C. N., Nelson, P. G., Bullock, P., Mullinax, D., and Nirenberg, M., 1978, Pharmacologic responses of cells of a neuroblastoma x glioma hybrid clone and modulation of synapses between hybrid cells and mouse myotubes, Brain Res., 147: 261.PubMedCrossRefGoogle Scholar
  12. Cohen, S. A., and Fischbach, G. D., 1977, Clusters of acetylcholine receptors located at identified nerve muscle synapses in vitro, Dev. Biol., 59: 24.Google Scholar
  13. Castillo, J. and Katz, B., 1954, Quantal components of end-plate potential, J. Physiol., 124: 560.Google Scholar
  14. Dennis, M. J., 1975, Physiological properties of junctions between nerve and muscle developing during salamander limb regeneration, J. Physiol., 244: 683.PubMedGoogle Scholar
  15. Diamond, J. and Miledi, R., 1962, A study of foetal and new-born rat muscle fibers, J. Physiol., 162: 393.PubMedGoogle Scholar
  16. Furshpan, E. J., 1956, The effect of osmotic pressure changes on the spontaneous activity at motor nerve endings, J. Physiol., 134: 689.PubMedGoogle Scholar
  17. Hamill, 0. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch., 391: 85.Google Scholar
  18. Higashida, H., Wilson, S. P., Adler, M., and Nirenberg, M., 1978, Synapse formation by neuroblastoma and hybrid cell lines, Soc. Neurosci. Abstr., 4: 591.Google Scholar
  19. Hubbard, J. I., Jones, S. F., and Landau, E. M., 1968a, On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals, J. Physiol., 194: 355.PubMedGoogle Scholar
  20. Hubbard, J. I., Jones, S. F., and Landau, E. M., 1968b, An examination ofGoogle Scholar
  21. The effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals, J. Physiol., 197: 639.Google Scholar
  22. Hubbard, J. I. and Kwanbunbumpen, S., 1968, Evidence for the vesicle hypothesis, J. Physiol., 194: 407.PubMedGoogle Scholar
  23. Karnovsky, M. and Roots, L., 1964, A direct-coloring thiocholine method for cholinesterases, J. Histochem. Cytochem., 12: 219.Google Scholar
  24. Kuffler, S. W. and Yoshikami, D., 1975, The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range, J. Physiol., 244: 703.PubMedGoogle Scholar
  25. Land, B. R., Podleski, T. R., Salpeter, E. E., and Salpeter, M. M., 1977,Google Scholar
  26. Acetylcholine receptor distribution on myotubes in culture correlated to acetylcholine sensitivity, J. Physiol., 269: 155.Google Scholar
  27. Liley, A. W., 1956, An investigation of spontaneous activity at the neuromuscular junction of the rat, J. Physiol., 132: 650.PubMedGoogle Scholar
  28. Minna, J., Glazer, D., and Nirenberg, M., 1972, Genetic dissection of neural properties using somatic cell hybrids, Nature New Biol., 235: 225.PubMedGoogle Scholar
  29. Nelson, P., Christian, C., and Nirenberg, M., 1976, Synapse formationGoogle Scholar
  30. between clonal neuroblastoma x glioma hybrid cells and striated muscle cells, Proc. Natl. Acad. Sci., 73: 123.Google Scholar
  31. Nelson, P. G., Christian, C. N., Daniels, M. P., Henkart, M.,Bullock, P., Mullinax, D., and Nirenberg, M., 1978, Formation of synapses between cells of a neuroblastoma x glioma hybrid clone and mouse myotubes, Brain Res., 147: 245.PubMedCrossRefGoogle Scholar
  32. Nirenberg, M., Wilson, S., Higashida, H., Rotter, A., Krueger K., Busis, N., Ray, R., Kenimer, J. G., and Adler, M., 1983, Modulation of synapse formation by cyclic adenosine monophosphate, Science, 222: 794.PubMedCrossRefGoogle Scholar
  33. Pascuzzo, G. J., Akaike, A., Maleque, M. A., Shaw, K.-P., Aronstam, R. S.,Google Scholar
  34. Rickett, D. L., and Albuquerque, E. X., 1984, The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor- ionic channel complex. I. Agonist, desensitizing and binding properties, Mol. Pharmacol., 25: 92.Google Scholar
  35. Peper, K., Bradley, R. J., and Dreyer, F., 1982, The acetylcholine receptor at the neuromuscular junction, Physiol. Rev., 62: 1271.Google Scholar
  36. Redfern, P. A., 1970, Neuromuscular transmission in new-born rats, J. Physiol., 208: 701.Google Scholar
  37. Rubin, L. L., Schuetze, S. M., Weill, C. L., and Fischbach, G. D., 1980, Regulation of acetylcholinesterase appearance at neuromuscular junc¬tions in vitro, Nature, 283: 264.PubMedCrossRefGoogle Scholar
  38. Sanes, J. R., Feldman, D. H., Cheney, J. M., and Lawrence, J. C., Jr., 1984, Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes, J. Neurosci., 4: 464.PubMedGoogle Scholar
  39. Schofield, G. G., Weight, F. F., and Adler, M., 1985, Single acetylcholine channel currents in sympathetic neurons, Brain Res., 342: 200.PubMedCrossRefGoogle Scholar
  40. Siakotis, A. N., Filbert, M., and Hester, R., 1969, A specific radioisotopic assay for acetylcholinesterase and pseudocholinesterase in brain and plasma, Biochem. Med., 3: 1.Google Scholar
  41. Sugiyama, H., 1977, Multiple forms of acetylcholinesterase in clonal muscle cells, FEBS Letters, 84: 257.PubMedCrossRefGoogle Scholar
  42. Takeuchi, A. and Takeuchi, N., 1959, Active phase of frog’s endplate potential, J. Neurophysiol., 22: 395.PubMedGoogle Scholar
  43. Vogel, Z. V. I., Christian, C. N., Vigny, M., Bauer, H. C.,Google Scholar
  44. Sonderegger, P., and Daniels, M. P., 1983, Laminin induces acetylcholine receptor aggregation on cultured myotubes and enhances the receptor aggregation activity of a neuronal factor, J. Neurosci., 3: 1058PubMedGoogle Scholar
  45. Whittaker, V. P., Essman, W. B., and Dowe, G. H. C., 1972, The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family torpedinidae, Biochem. J., 128: 833.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michael Adler
    • 1
  • Sharon Reutter
    • 1
  • Sharad S. Deshpande
    • 2
  • C. Sue Hudson
    • 2
  • Margaret G. Filbert
    • 1
  1. 1.Neurotoxicology BranchU. S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundUSA
  2. 2.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations