Activation and Blockade of the Nicotinic and Glutamatergic Synapses by Reversible and Irreversible Cholinesterase Inhibitors

  • Edson X. Albuquerque
  • Yasco Aracava
  • Mamdouh Idriss
  • Bernhard Schönenberger
  • Arnold Brossi
  • Sharad S. Deshpande


The nicotinic acetylcholine receptor-ionic channel (AChR)4 of the neuromuscular junction, particularly that from Torpedo electric tissue, is the best characterized of all receptors. It has been functionally isolated, and the topographic arrangement of the polypeptide subunits and the amino acid composition have been detailed (Klymkowsky et al., 1980; Karlin et al., 1983; Noda et al., 1983; Sakmann et al., 1985). The involvement of some of these subunits in the binding sites for drugs has been determined biochemically and electrophysiologically (Krodel et al., 1979; Horn et al., 1980; Karlin, 1980; Aguayo et al., 1981; Spivak and Albuquerque, 1982; Changeux et al., 1984; Wan and Lindstrom, 1984).


Channel Open Time Neuromuscular Synapse Frog Neuromuscular Junction Endplate Current Nicotinic AChR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, M., Albuquerque, E.X., and Lebeda, F.J., 1978, Kinetic analysis of end plate currents altered by atropine and scopolamine, Mol. Pharmacol. 14: 514–529.PubMedGoogle Scholar
  2. Aguayo, L.G., Pazhenchevsky, B., Daly, J.W, and Albuquerque, E.X. 1981, The ionic channel of the acetylcholine receptor. Regulation by sites outside and inside the cell membrane which are sensitive to quaternary ligands, Mol. Pharmacol. 29: 345–355.Google Scholar
  3. Akaike, A., Ikeda, S.R., Brookes, N., Pascuzzo, G.J., Rickett, D.L., and Albuquerque, E.X., 1984, The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex II. Patch clamp studies, Mol. Pharmacol. 25: 102–112.PubMedGoogle Scholar
  4. Albuquerque, E.X., Akaike, A., Shaw, K.-P., and Rickett, D.L., 1984, The interaction of anticholinesterase agents with the acetylcholine receptor-ionic channel complex, Fundam. Appl. Toxicol. 4: S27–S33.CrossRefGoogle Scholar
  5. Albuquerque, E.X., Deshpande, S.S., Kawabuchi, M., Aracava, Y., Idriss, M., Rickett, D.L. and Boyne, A.F., 1985, Multiple actions of anticholinesterase agents on chemosensitive synapses: Molecular basis for prophylaxis and treatment of organophosphate poisoning, Fundam. Appl. Toxicol. 5: S182–S203.CrossRefGoogle Scholar
  6. Allen, C.N., Akaike, A., and Albuquerque E.X., 1984, The frog interosseal muscle fiber as a new model for patch clamp studies of chemosensitive- and voltage-sensitive ion channels: actions of acetylcholine and batrachotoxin, J. Physiol. (Paris) 79: 338–343.Google Scholar
  7. Anderson, R., and Stevens, C.F., 1973, Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction, J. Physiol. (Lond.), 235: 655–691.Google Scholar
  8. Aracava, Y., Ikeda, S.R., Daly, J.W., Brookes, N., and Albuquerque, E.X., 1984, Interactions of bupivacaine with ionic channels of nicotinic receptor. Analysis of single-channel currents, Mol. Pharmacol. 26: 304–313.PubMedGoogle Scholar
  9. Aracava, Y., and Albuquerque, E.X., 1985, Direct interactions of reversible and irreversible cholinesterase (ChE) inhibitors with the acetylcholine receptor-ionic channel complex (AChR): Agonist activity and open channel blockade, Neurosci. Abstr. 11: 595.Google Scholar
  10. Changeux, J.-P., Devillers-Thiéry, A., and Chemouilli, P., 1984, Acetylcholine receptor: an allosteric protein, Science 225: 1335–1345.PubMedCrossRefGoogle Scholar
  11. Colhoun, E.H., 1958, Acetylcholine in Periplaneta americana L. I. ACh levels in nervous tissue, J. Insect Physiol. 2: 117–127.CrossRefGoogle Scholar
  12. Colhoun, E.H., 1963, The physiological significance of ACh in insects and observations upon other pharmacologically active substances, Adv. Insect Physiol. 1: 1–41.CrossRefGoogle Scholar
  13. Corteggiani, E., and Serfaty, A., 1939, Acetylcholine et cholinesterase chez les insectes et les arachnidés, C R Soc. Biol. (Paris), 131: 1124–1126.Google Scholar
  14. Deshpande, S.S., Viana, G.B., Kauffman, F.C., Rickett, D.L., and Albuquerque, E.X., 1986, Effectiveness of physostigmine as a pre- treatment drug for protection of rats from organophosphate poisoning, Fundam. Appl. Toxicol. 6: 566–577.CrossRefGoogle Scholar
  15. Ellman, G.L., Courtney, K.D., Andres, V., Jr., and Featherstone, R.M., 1961, A new rapid colorimetric determination of acetyl-cholinesterase activity, Biochem. Pharmacol. 7: 88–95.Google Scholar
  16. Faeder, I.R., and O’Brien, R.D., 1970, Responses of perfused isolated leg preparations of the cockroach Gromphadorhina portentosa to L-glutamate, GABA, picrotoxin, strychnine and chlorpromazine, J. Exp. Zool. 173: 203–214.PubMedCrossRefGoogle Scholar
  17. Fiekers, J.F., 1985, Concentration-dependent effects of neostigmine on the endplate acetylcholine receptor channel complex, J. Neurosci. 5: 502–514.PubMedGoogle Scholar
  18. Fulton, B.P., and Usherwood, P.N.R., 1977, Presynaptic acetylcholine action at the locust neuromuscular junction, Neuropharmacology 16: 877–880.CrossRefGoogle Scholar
  19. Hamill, 0.P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells, Nature (Lond.) 294: 462–464.CrossRefGoogle Scholar
  20. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch. 391: 85–100.PubMedCrossRefGoogle Scholar
  21. Hollingworth, R.M., 1976, The biochemical and physiological basis of selective toxicity, in: “Insecticide Biochemistry and Physiology”, C.F. Wilkinson, ed., Plenum Press, New York, p. 431–506.Google Scholar
  22. Horn, R., Brodwick, M.S., and Dickey, W.D., 1980, Asymmetry of the acetylcholine channel revealed by quaternary anesthetics, Science 210: 205–207.PubMedCrossRefGoogle Scholar
  23. Hoyle, G., 1955, The anatomy and innervation of locust skeletal muscle, Proc. Roy. Soc. London Ser. B 143: 281–292.CrossRefGoogle Scholar
  24. Idriss, M., and Albuquerque, E.X., 1985a, Phencyclidine (PCP) blocks glutamate-activated postsynaptic currents, FEBS Lett. 189: 150–156.PubMedCrossRefGoogle Scholar
  25. Idriss, M., and Albuquerque, E.X., 1985b, Anticholinesterase (Anti-ChE) agents interact with pre- and postsynaptic regions of the glutamatergic synapse, Biophys. Soc. Abstr. 47: 259a.Google Scholar
  26. Idriss, M.K., Aguayo, L.G., Rickett, D.L., and Albuquerque, E.X., 1986, Organophosphate and carbamate compounds have pre- and postjunctional effects at the insect glutamatergic synapse, J. Pharmacol. Exp. Ther., submitted.Google Scholar
  27. Ikeda, S.R., Aronstam, R.S., Daly, J.W., Aracava, Y. and Albuquerque, E.X., 1984, Interactions of bupivacaine with ionic channels of the nicotinic receptor. Electrophysiological and biochemical studies, Mol. Pharmacol. 26: 293–303.PubMedGoogle Scholar
  28. Karczmar, A.G. and Dun, N.J., 1985, Pharmacology of synaptic ganglionic transmission and second messengers, in: “Autonomic and Enteric Ganglia: Transmission and Pharmacology”, A.G. Karczmar, K. Koketsu, S. Nishi, eds., Plenum Press, New York, p. 297–337.Google Scholar
  29. Karczmar, A.G. and Ohta, Y., 1981, Neuromyopharmacology as related to anticholinesterase action, Fundam. Appl. Pharmacol. 1: 135–142.Google Scholar
  30. Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: “The Cell Surface and Neuronal Function”, C.W. Cotman, G. Poste, and G.J. Nicolson, eds., Elsevier/North Holland Biomedical Press, New York, p. 191–260.Google Scholar
  31. Karlin, A., Holtzman, E., Yodh, N., Lobel, P., Wall, J., and Hainfeld, J., 1983, The arrangement of the subunits of the acetylcholine receptor of Torpedo californica, J. Biol. Chem. 258: 6678–6681.PubMedGoogle Scholar
  32. Klymkowsky, M.W., Heuser, J.E., and Stroud, R.M., 1980, Protease effect on the structure of acetylcholine receptor membranes from Torpedo californica, J. Cell Biol. 85: 823–838.PubMedCrossRefGoogle Scholar
  33. Kordas, M., 1977, On the role of junctional cholinesterase in determining the time course of the end-plate current, J. Physiol. (Lond.) 270: 133–150.Google Scholar
  34. Krodel, E.K., Beckmann, R.A., and Cohen, J.B., 1979, Identification of local anesthetic binding site in nicotinic postsynaptic membranes isolated from Torpedo marmorata electric tissue, Mol. Pharmacol. 15: 294–312.PubMedGoogle Scholar
  35. Kuba, K., Albuquerque, E.X., and Barnard, E.A., 1973, Diisopropylfluoro-phosphate: suppression of ionic conductance of the cholinergic receptor, Science 181: 853–856.PubMedCrossRefGoogle Scholar
  36. Kuba, K., Albuquerque, E.X., Daly, J., and Barnard, E.A., 1974, A study of the irreversible cholinesterase inhibitor, diisopropylfluoro-phosphate, on time course of end-plate currents in frog sartorius muscle, J. Pharmacol. Exp. Ther. 189: 499–512.PubMedGoogle Scholar
  37. Laskowski, M.B., and Dettbarn, W.D., 1975, Presynaptic effects of neuromuscular cholinesterase inhibition, J. Pharmacol. Exp. Ther. 194: 351–361.PubMedGoogle Scholar
  38. Lowry, O.H., Rosebrough, M.J., Farr, A.L., and Randall, R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  39. Magleby, K.L., and Stevens, C.F., 1972, A quantitative description of end-plate currents, J. Physiol. (Lond.) 223: 173–197.Google Scholar
  40. Magleby, K.L., and Terrar, D.A., 1975, Factors affecting the time course of decay of end-plate currents: A possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction, J. Physiol. (Lond.) 244: 467–495.Google Scholar
  41. Mathers, D.A., and Usherwood, P.N.R., 1976, Concanavalin A blocks desensitization of glutamate receptors on insect muscle fibers, Nature (Lond.) 259: 409–411.CrossRefGoogle Scholar
  42. McCann, F.V., and Reece, R.W., 1967, Neuromuscular transmission in insects: effect of injected chemical agents, Comp. Biochem. Physiol. 21: 115–124.Google Scholar
  43. McDonald, T.J., Farley, R.D., and March, R.B., 1972, Pharmacological profile of the excitatory neuromuscular synapses of insect retractor unguis muscle, Comp. Gen. Pharmaco1. 3: 327–338.CrossRefGoogle Scholar
  44. Meshul, C.K., Boyne, A.F., Deshpande, S.S., and Albuquerque, E.X., 1985, Comparison of the ultrastructural myopathy induced by anticholinesterase agents at the endplate of rat soleus and extensor muscles, Exp. Neurol. 89: 96–114.Google Scholar
  45. Neher, E. and Steinbach, J.H., 1978, Local anesthetics transiently block currents through single acetylcholine-receptor channels, J. Physiol. (Lond.) 277: 153–176.Google Scholar
  46. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., Miyata, T. and Numa, S., 1983, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor, Nature (Lond.) 305: 818–823.CrossRefGoogle Scholar
  47. Pascuzzo, G.J., Akaike, A., Maleque, M.A., Shaw, K.-P., Aronstam, R.S., Rickett, D.L., and Albuquerque, E.X., 1984, The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex I. Agonist, desensitizing and binding properties, Mol. Pharmacol. 25: 92–101.PubMedGoogle Scholar
  48. Rao, K.S., and Albuquerque, E.X., 1984, The interactions of pyridine-2- aldoxime methiodide (2-PAM), a reactivator of cholinesterase, with the nicotinic receptor of the frog neuromuscular junction, Neurosci. Abstr. 10: 563.Google Scholar
  49. Rao, K.S., Aracava, Y., Rickett, D.L., and Albuquerque, E.X., 1986, Noncompetitive blockade of the nicotinic acetylcholine receptor ion channel complex by an irreversible cholinesterase inhibitor, J. Pharmacol. Exp. Ther., submitted.Google Scholar
  50. Ruff, R.L., 1977, A quantitative analysis of local anesthetic alteration of miniature end-plate currents and end-plate current fluctuations, J. Physiol. (Lond.) 264: 89–124.Google Scholar
  51. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fujuda, K., and Numa, S., 1985, Role of acetylcholine receptor subunits in gating of the channel, Nature (Lond.) 318: 538–543.CrossRefGoogle Scholar
  52. Shaw, K.-P., Aracava, Y., Akaike, A., Rickett, D.L., and Albuquerque, E.X., 1985, The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex, Mol. Pharmacol. 28: 527–538.PubMedGoogle Scholar
  53. Sherby, S.M., Eldefrawi, A.T., Albuquerque, E.X., and Eldefrawi, M.E., 1985, Comparison of the actions of carbamate anticholinesterases on the nicotinic acetylcholine receptor, Mol. Pharmacol. 27: 343–348.PubMedGoogle Scholar
  54. Sine, S.M., and Steinbach, J.H., 1984, Activation of a nicotinic acetylcholine receptor, Biophys. J. 45: 175–185.PubMedCrossRefGoogle Scholar
  55. Spivak, C.E., and Albuquerque, E.X., 1982, Dynamic properties of the nicotinic acetylcholine receptor ionic channel complex: activation and blockade, in: “Progress in Cholinergic Biology: Model Cholinergic Synapses”, I. Hanin, and A.M. Goldberg, eds., Raven Press, New York, p. 323–357.Google Scholar
  56. Spivak, C.E., and Albuquerque, E.X., 1985, Triphenylmethylphosphonium blocks the nicotinic acetylcholine receptor noncompetitively, Mol. Pharmacol. 27: 246–255.PubMedGoogle Scholar
  57. Takeuchi, A., and Takeuchi, N., 1959, Active phase of frog’s end-plate potential, J. Neurophysiol. 22: 395–411.PubMedGoogle Scholar
  58. Tobias, J.M., Kollros, J.J., and Savit, J., 1946, Acetylcholine and related substances in the cockroach, fly and crayfish, and the effect of DDT, J. Cell. Comp. Physiol. 28: 159–182.CrossRefGoogle Scholar
  59. Usherwood, P.N.R., and Grundfest, H., 1965, Peripheral inhibition in skeletal muscle of insect, J. Neurophysiol. 28: 497–518.PubMedGoogle Scholar
  60. Usherwood, P.N.R., and Machili, P., 1968, Pharmacological properties of excitatory neuromuscular synapses in the locust, J. Exp. Biol. 49: 341–361.Google Scholar
  61. Varanda, W.A., Aracava, Y., Sherby, S.M., VanMeter, W.G., Eldefrawi, M.E., and Albuquerque, E.X., 1985, The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist, Mol. Pharmacol. 28: 128–137.PubMedGoogle Scholar
  62. Wan, K.K., and Lindstrom, J., 1984, Nicotinic acetylcholine receptor, in: “The Receptors” Vol. I., M.P. Conn, ed., Academic Press, New York, p. 377–430.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Edson X. Albuquerque
    • 1
  • Yasco Aracava
    • 1
  • Mamdouh Idriss
    • 1
    • 2
  • Bernhard Schönenberger
    • 1
    • 3
  • Arnold Brossi
    • 1
    • 3
  • Sharad S. Deshpande
    • 1
  1. 1.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Division of Entomology, Faculty of AgricultureUniversity of AlexandriaAlexandriaEgypt
  3. 3.Laboratory of ChemistryNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUSA

Personalised recommendations