Role of Acetylcholine in the Cerebral Cortex

  • K. Krnjević


Acetylcholine (ACh) has been considered a possible central synaptic transmitter for some 50 years (Dale, 1938). What kind of role cholinergic synapses might play in brain function is a topic that has long fascinated Alexander Karczmar (e. g. Karczmar, 1969; 1973). It is therefore entirely appropriate to review here briefly what we know about cholinergic action in the cerebral cortex.


Cortical Neuron Outward Current Population Spike Cholinergic Mechanism Hippocampal Pyramidal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belluzzi, O., Sacchi, O., and Wanke, E., 1985, Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage clamp, J. Physiol., 358: 109–129.PubMedGoogle Scholar
  2. Benardo, L.S., and Prince, D.A., 1982, Cholinergic excitation of mammalian hippocampal pyramidal cells, Brain Res., 249: 315–331.PubMedCrossRefGoogle Scholar
  3. Ben-Ari, Y., Krnjevic, K., Reinhardt, W., and Ropert, N., 1981, Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus, Neuroscience, 6: 2475–2484.PubMedCrossRefGoogle Scholar
  4. Bernard, G., Floris, V., Marciani, M.G., Morocutti, C., and Stanzione, P., 1976, The action of acetylcholine and L-glutamic acid on rat caudate neurons, Brain Res., 114: 134–138.CrossRefGoogle Scholar
  5. Bowen, D.M., Smith, C.B., White, P., and Davison, A.N., 1976, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain, 99: 459–496.PubMedCrossRefGoogle Scholar
  6. Brown, D.A., and Adams, P.R., 1980, Muscarinic suppression of novel voltage-sensitive K+ current in a vertebrate neurone. Nature, 283: 673–676.PubMedCrossRefGoogle Scholar
  7. Cole, A.E, and Nicoll, R.A., 1983, Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells, Science, 221: 1299–1301.PubMedCrossRefGoogle Scholar
  8. Collier, B., 1977, Biochemistry and physiology of cholinergic transmission, in: “Handbook of Physiology, Section I: The Nervous System”, Volume 1, Part 1, J.M. Brookhart, V.B. Mountcastle, E.R. Kandel, and S.R. Geiger, eds., American Physiological Society, Bethesda, Maryland, pp. 463–492.Google Scholar
  9. Crepel, F., and Dhanjal, S.S., 1982, Cholinergic mechanisms and neurotransmission in the cerebellum of the rat. An in vitro study. Brain Res., 244: 59–68.PubMedCrossRefGoogle Scholar
  10. Curtis, D.R., and Ryall, R.W., 1966, The excitation of Renshaw cells by cholinomimetics, Exp. Brain Res., 2: 49–65.PubMedGoogle Scholar
  11. Dale, H.H., 1938, Acetylcholine as a chemical transmitter of the effects of nerve impulses, J. Mt. Sinai Hosp., 4: 401–429.Google Scholar
  12. Dalkara, T., Krnjevic, K., Ropert, N., and Yim, C.Y., 1985, Chemical modulation of ephaptic activation of CA3 hippocampal pyramids, Neuroscience.Google Scholar
  13. Del Castillo, J., and Katz, B., 1956, Biophysical aspects of neuromuscular transmission, Progr. Biophys., 6: 121–170.Google Scholar
  14. Dudar, J.D., 1977, The role of the septal nuclei in the release of acetylcholine from the rabbit cerebral cortex and dorsal hippocampus and the effect of atropine, Brain Res., 129: 237–246.PubMedCrossRefGoogle Scholar
  15. Eccles, J.C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, J. Physiol., 126: 524–562.PubMedGoogle Scholar
  16. Fibiger, H.C., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Reviews, 4: 327–388.CrossRefGoogle Scholar
  17. Ghwiler, B.H., 1984, Facilitation by acetylcholine of tetrodotoxin-resistant spikes in rat hippocampal pyramidal cells, Neuroscience, 11: 381–388.CrossRefGoogle Scholar
  18. Glavinovic, M., Ropert, N., Krnjevic, K., and Collier, B., 1983, Hemicholinium impairs septo-hippocampal facilitatory action, Neuroscience, 9: 319–330.PubMedCrossRefGoogle Scholar
  19. Haas, H.L., 1982, Cholinergic disinhibition in hippocampal slices of the rat. Brain Res., 233: 200–204.PubMedCrossRefGoogle Scholar
  20. Halliwell, J.V., and Adams, P.R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res., 250: 71–92.PubMedCrossRefGoogle Scholar
  21. Hounsgaard, J., 1978, Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus, Exp. Neurol., 62: 787–797.PubMedCrossRefGoogle Scholar
  22. Karczmar, A.G., 1969, Quelques aspects de la pharmacologie des synapses cholinergiques et de sa signification centrale, Actualités Pharmacologiques, 28: 293–338.Google Scholar
  23. Karczmar, A.G., 1973, The chemical coding via the cholinergic system: its organization and behavioral implications, in: “Neurohumoral coding of brain function”, R.P. Drucker-Colin and R.D. Myers, eds., Plenum Press, New York, pp. 399–418.Google Scholar
  24. Krnjevic, K., 1967, Chemical transmission and cortical arousal, Anesthesiology, 28: 100–105.PubMedCrossRefGoogle Scholar
  25. Krnjevic, K., 1977, Control of neuronal excitability by intracellular divalent cations: a possible target for neurotransmitter actions, in: “Neurotransmitter Function: Basic and Clinical Aspects”, W.S. Field, ed., Symposia Specialists Press, Miami, Florida, pp. 11–26.Google Scholar
  26. Krnjevic, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurons, J. Physiol., 225: 363–390.PubMedGoogle Scholar
  27. Krnjevic, K., and Phillis, J.W., 1963a, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol., 165: 274–304.PubMedGoogle Scholar
  28. Krnjevic, K., and Phillis, J.W., 1963b, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex. J. Physiol., 166: 328–350.PubMedGoogle Scholar
  29. Krnjevic, K., Pumain, R., and Renaud, L., 1971a, Effect of Ba2+ and tetraethylammonium on cortical neurones. J. Physiol., 215: 223–245.PubMedGoogle Scholar
  30. Krnjevic, K., Pumain, R., and Renaud, L., 1971b, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol., 215: 247–268.PubMedGoogle Scholar
  31. Krnjevic, K., Reiffenstein, R.J., and Ropert, N., 1980, Disinhibitory action of acetylcholine in the hippocampus, J. Physiol., 308: 73–74 P.Google Scholar
  32. Krnjevic, K., and Ropert, N., 1982, Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum, Neuroscience, 7: 2165–2183.PubMedCrossRefGoogle Scholar
  33. Krnjevic, K., and Silver, A., 1965, A histochemical study of cholinergic fibres in the cerebral cortex, J. Anat. (Lond.), 99: 711–759.Google Scholar
  34. Krnjevic, K., and Silver, A., 1966, Acetylcholinesterase in the developing forebrain, J. Anat. (Lond.), 100: 63–89.Google Scholar
  35. Lewis, P.R., Shute, C.C.D., and Silver, A., 1967, Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus, J. Physiol., 191: 215–224.PubMedGoogle Scholar
  36. Libet, B., 1973, Electrical stimulation of cortex in human subjects, and conscious sensory aspects, Handb. Sensory Physiol., Springer-Verlag, Berlin, 2: 743–790.CrossRefGoogle Scholar
  37. Macintosh, F.C., and Oborin, P.E., 1953, Release of acetylcholine from intact cerebral cortex, Abst. XIX Int. Physiol. Congr., Montréal, pp. 580–581.Google Scholar
  38. Meech, R.W., 1972, Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells, Comp. Biochem. Physiol., 42A: 493–499.CrossRefGoogle Scholar
  39. Mesulam, M.-M., Mufson, E.J., Wainer, B.H., and Levey, A.I., 1983, Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl–Ch6). Neuroscience, 10: 1185–1201.PubMedCrossRefGoogle Scholar
  40. Morita, K., North, R.A., and Tokimasa, T., 1982, Muscarinic agonists inactivate potassium conductance of guinea-pig myenteric neurones, J. Physiol., 333: 125–139.PubMedGoogle Scholar
  41. Newberry, N.R., and Nicoll, R.A., 1985, Comparison of the action of baclofen with y-aminobutyric acid on rat hippocampal pyramidal cells, J. Physiol., 360: 161–85.PubMedGoogle Scholar
  42. Segal, M., 1983, Rat hippocampal neurons in culture: responses to electrical and chemical stimuli, J. Neurophysiol., 50: 1249–1264.PubMedGoogle Scholar
  43. Shute, C.C.D., and Lewis, P.R., 1963, Cholinesterase-containing systems of the brain of the rat, Nature (Lond.), 199: 1160–1164.CrossRefGoogle Scholar
  44. Sillito, A.M., and Kemp, J.A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex, Brain Res., 289: 143–155.PubMedCrossRefGoogle Scholar
  45. Spehlmann, R., 1963, Acetylcholine and prostigmine electrophoresis at visual cortical neurons, J. Neurophysiol., 26: 127–139.PubMedGoogle Scholar
  46. Stafstrom, C.E., Schwindt, P.C., Chubb, M.C., and Crill, W.E., 1985, Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol., 53: 153–170.PubMedGoogle Scholar
  47. Stone, T.W., 1972, Cholinergic mechanisms in the rat somatosensory cerebral cortex, J. Physiol., 225: 485–499.PubMedGoogle Scholar
  48. Szerb, J.C., 1978, Characterization of presynaptic muscarinic receptors in central cholinergic neurons, in: “Cholinergic Mechanisms and Psychopharmacology, Advances in Behavioural Biology”, Vol. 24, D.J. Jenden, ed., Plenum Press, New York, pp. 49–60.Google Scholar
  49. Takeuchi, N., 1963, Some properties of conductance changes at the end-plate membrane during the action of acetylcholine, J. Physiol., 167: 128–140.PubMedGoogle Scholar
  50. Taylor, C.P., and Dudek, F.E., 1982, Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses, Science, 218: 810–812.PubMedCrossRefGoogle Scholar
  51. Valentino, R.J., and Dingledine, R., 1981, Presynaptic inhibitory effect of acetylcholine in the hippocampus, J. Neuroscience, 1: 784–792.Google Scholar
  52. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., and DeLong, M.R., 1982, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 215: 1237–1239.PubMedCrossRefGoogle Scholar
  53. Woody, C.D., Swartz, B.E., and Gruen, E., 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Brain Res., 158: 373–395.PubMedCrossRefGoogle Scholar
  54. Zieglgänsberger, W., and Reiter, C., 1974, A cholinergic mechanism in the spinal cord of cats, Neuropharmacol., 13: 519–527.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. Krnjević
    • 1
  1. 1.Anaesthesia Research and Physiology DepartmentsMcGill UniversityMontréalCanada

Personalised recommendations