Advertisement

Alteration of the Ganglionic Fast EPSC by Anticholinesterase Drugs or Protease Treatment

  • R. L. Parsons
  • D. S. Neel
  • A. B. MacDermott
  • E. A. Connor

Abstract

Vertebrate autonomic ganglia have proven to be useful model systems for electrophysiological studies of both voltage-dependent and chemically-gated membrane conductances (2, 19). We have used amphibian autonomic ganglia to analyze the basic biophysical and pharmacological properties of nicotinic, cholinergic-gated responses at a vertebrate neuronal synapse (7, 10, 21). Our results have demonstrated that the ganglionic fast excitatory postsynaptic current (EPSC) differs from the more extensively studied muscle end-plate synaptic current (EPC) in its time course, voltage dependence, and response to a number of pharmacological interventions (7–11, 21).

Keywords

Decay Time Decay Phase Exponential Component Peak Current Amplitude EPSC Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, P.R. (1976) Drug blockade of open end-plate channels. J. Physiol. 260: 531–552.PubMedGoogle Scholar
  2. 2.
    Adams, P.R. (1982) Voltage-dependent conductances of vertebrate neurons. Trends Neurosci. 5: 116–119.CrossRefGoogle Scholar
  3. 3.
    Akaike, A., Ikeda, S.R., Brookes, N., Pascuzzo, G.J., Rickett, D.L. and Albuquerque, E.X. (1984) The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor ionic channel complex. II. Patch clamp studies. Mol. Pharmacol. 25: 102–112.PubMedGoogle Scholar
  4. 4.
    Betz, W. and Sakmann, B. (1971) Dysjunction of frog neuromuscular synapses by treatment with proteolytic enzymes. Nature New Biol. 232: 94–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Betz, W. and Sakmann, B. (1973) Effects of proteolytic enzymes on function and structure of frog neuromuscular junction. J. Physiol. 230: 673–688.PubMedGoogle Scholar
  6. 6.
    Brzin, M., Tennyson, V.M. and Duffy, P.E. (1966) Acetylcholinesterase in frog sympathetic and dorsal root ganglia. A study by electron microscopic cytochemistry and microgasometric analysis with the magnetic diver. J. Cell Biol. 31: 215–242.PubMedCrossRefGoogle Scholar
  7. 7.
    Connor, E.A., Levy, S.M. and Parsons, R.L. (1983) Kinetic analysis of atropine-induced alterations in bullfrog ganglionic fast synaptic currents. J. Physiol. 337: 137–158.PubMedGoogle Scholar
  8. 8.
    Connor, E.A., Neel, D.S. and Parsons, R.L. (1985) Influence of the extracellular ionic environment on ganglionic fast excitatory postsynaptic currents. Brain Research. In Press.Google Scholar
  9. 9.
    Connor, E.A. and Parsons, R.L. (1983) Procaine alters fast excitatory postsynaptic current decay in amphibian sympathetic ganglia. Br. J. Pharmac. 78: 293–299.Google Scholar
  10. 10.
    Connor, E.A. and Parsons, R.L. (1983) Analysis of fast excitatory postsynaptic currents in bullfrog parasympathetic ganglion cells. J. Neurosci. 3: 2164–2171.PubMedGoogle Scholar
  11. 11.
    Connor, E.A. and Parsons, R.L. (1984) Alteration of the fast excitatory postsynaptic current by barium in voltage-clamped amphibian sympathetic ganglion cells. Br. J. Pharmac. 83: 31–42.Google Scholar
  12. 12.
    Dreyer, F., Walther, C. and Peper, K. (1976) Junctional and extra-junctional acetylcholine receptors in normal and denervated frog muscle fibres. Pflugers Arch. 366: 1–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Fiekers, J.F. (1985) Concentration-dependent effects of neostigmine on the end-plate acetylcholine receptor channel complex. J. Neurosci. 5: 502–514.PubMedGoogle Scholar
  14. 14.
    Fiekers, J.F. (1985) Interactions of edrophonium, physostigmine, and methane sulfonyl fluoride with the snake end-plate acetylcholine receptor-channel complex. J. Pharmacol, exp. Therap. In press.Google Scholar
  15. 15.
    Goldman, M.M. and Narahashi, T. (1974) Effects of edrophonium on end-plate currents in frog skeletal muscle. Eur. J. Pharmacol. 25: 362–371.CrossRefGoogle Scholar
  16. 16.
    Hall, Z.W. and Kelly, R.B. (1971) Enzymatic detachment of end- plate acetylcholinesterase from muscle. Nature New Biol. 232: 549–557.CrossRefGoogle Scholar
  17. 17.
    Kordas, M., Brzin, M. and Majcen, Z. (1975) A comparison of the effect of cholinesterase inhibitors on end-plate current and on cholinesterase activity in frog muscle. Neuropharmacology 14: 791–800.PubMedCrossRefGoogle Scholar
  18. 18.
    Kordas, M. (1977) On the role of junctional cholinesterase in determining the time course of the end-plate current. J. Physiol. 270: 133–150.PubMedGoogle Scholar
  19. 19.
    Kuba, K. and Koketsu, K. (1978) Synaptic events in sympathetic ganglia. Progr. Neurobiol. 11: 77–169.CrossRefGoogle Scholar
  20. 20.
    Kuba, K. and Nishi, S. (1979) Characteristics of fast excitatory postsynaptic current in bullfrog sympathetic ganglion cells. Pflugers Arch. 378: 205–212.PubMedCrossRefGoogle Scholar
  21. 21.
    MacDermott, A.B., Connor, E.A., Dionne, V.E. and Parsons, R.L. (1980) Voltage-clamp study of fast excitatory synaptic currents in bullfrog sympathetic ganglion cells. J. gen. Physiol. 75: 39–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Pascuzzo, G.J., Akaiki, A., Maleque, M.A., Shaw, K., Aronstam, R.S., Rickett, D.L. and Albuquerque, E.X. (1984) The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. I. Agonist, desensitizing and binding properties. Mol. Pharmacol. 25: 92–101.PubMedGoogle Scholar
  23. 23.
    Ruff, R.L. (1977) A quantitative analysis of local anesthetic alteration of miniature end-plate currents and end-plate current fluctuations. J, Physiol. 264: 89–124.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. L. Parsons
    • 1
  • D. S. Neel
    • 1
  • A. B. MacDermott
    • 2
  • E. A. Connor
    • 3
  1. 1.Dept. of Anatomy & Neurobiology, College of MedicineThe University of VermontBurlingtonUSA
  2. 2.Neurophysiology LabNINCDS-NIHBethesdaUSA
  3. 3.Dept. of NeurobiologyStanford UniversityStanfordUSA

Personalised recommendations