Muscarinic Receptor Activation Underlying the Slow Inhibitory Postsynaptic Potential (S-I.P.S.P.) and the Slow Excitatory Postsynaptic Potential (S-E.P.S.P.)

  • P. Shinnick-Gallagher
  • K. Hirai
  • J. P. Gallagher


Subtypes of muscarinic receptors were initially proposed by Birdsall and colleagues based on the different affinity states for agonists and for the selective muscarinic antagonist, pirenzepine (Birdsall et al., 1978; Hammer et al., 1980). Biochemical and physiological analyses of subtypes of muscarinic receptors have been unable to compare receptors at the same site or location but mediating functionally different events.


Muscarinic Receptor Rest Membrane Potential Sympathetic Ganglion Krebs Solution Slow Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P.R., Brown, D.A. and Constanti, A. 1982. M-currents and other potassium currents in bullfrog sympathetic neurones. J. Physiol. (Lond.) 330: 537–572.Google Scholar
  2. Belluzzi, O., Sacchi, 0. and Wânke, E. 1985. Identification of delayed potassium a fid calcium currents in the rat sympathetic neurone under voltage clamp. J. Physiol, (Lond.) 358: 109–129.Google Scholar
  3. Birdsall, N.J.M., Burgen, A.S.V, and Hulme, E.C. 1978. The binding of agonists to brain muscarinic receptors. Molec. Pharmacol. 14: 723–736.Google Scholar
  4. Brown, D.A., Forward, A. and Marsh, S. 1980. Antagonist discrimination between ganglionic and ileal muscarinic receptors. Br. J. Pharmacol. 71: 362–364.PubMedGoogle Scholar
  5. Cole, A.E. and Shinnick-Gallagher, P. 1980. Alpha-adrenoceptor and dopamine receptor antagonists do not block the slow inhibitory postsynaptic potential in sympathetic ganglia. Brain Res., 187, 226–230.PubMedCrossRefGoogle Scholar
  6. Cole, A.E. and Shinnick-Gallagher, P. 1981. Comparison of receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia. J. Pharmacol. Exp. Ther., 217: 440–444.PubMedGoogle Scholar
  7. Cole, A.E. and Shinnick-Gallagher, P. 1984. Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance. Nature 307: 270–271.PubMedCrossRefGoogle Scholar
  8. Dodd, J. and Horn, J.P. 1983. Muscarinic inhibition of sympathetic C neurones in the bullfrog. J. Physiol. (Lond.) 334: 271–291.Google Scholar
  9. Gallagher, J.P., Griffith, W.H. and Shinnick-Gallagher, P. 1982. Cholinergic transmission in cat parasympathetic neurones. J. Physiol. (Lond.) 332: 96–109.Google Scholar
  10. Galvan, M. and Sedlmeir, C. 1984. Outward currents in voltage-clamped rat sympathetic neurones. J. Physiol. (Lond.) 356: 115–133.Google Scholar
  11. Griffith III, Wm. H. 1980. The Physiology and Pharmacology of a Mammalian Parasympathetic Ganglion. Ph.D. Dissertation. University of Texas, Galveston, TX.Google Scholar
  12. Griffith, W.H., Gallagher, J.P. and Shinnick-Gallagher, P. 1980. An intracellular investigation of the cat vesical pelvic ganglion (VPG). J. Neurophysiol. 43: 343–354.PubMedGoogle Scholar
  13. Hammer, R., Berrie, C.P., Birdsall, N.J.M., Burgen, A.S.V. and Hulme, E.C. 1980. Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283: 90–92.PubMedCrossRefGoogle Scholar
  14. Hartzell, H.C., Kuffler, S.W., Stickgold, R., Yoshikami, D. 1977. Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemore- ceptors on individual amphibian parasympathetic neurones. J. Physiol (Lond.) 271: 817–846.Google Scholar
  15. Hirai, K., Nakamura, T., and Shinnick-Gallagher, P. and Yoshimura, M. Slow inhibitory potential mediated by a calcium-dependent potassium conductance in cat bladder parasympathetic ganglia. Submitted.Google Scholar
  16. Horn, J.P. and Dodd, J. 1981. Monosynaptic muscarinic activation of K+ conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia. Nature. 292: 625–627.PubMedCrossRefGoogle Scholar
  17. Kuba, K. and Koketsu, K. 1978. Synaptic events in sympathetic ganglia. Prog. Neurobiol. 11: 77–169.PubMedCrossRefGoogle Scholar
  18. Libet, B. 1970. Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc. 29: 1945.PubMedGoogle Scholar
  19. Mitchelson, F. 1984. Heterogeneity in muscarinic receptors: evidence from pharmacologic studies with antagonists. TIPS, Supp.: 12–16.Google Scholar
  20. Nishi, S. 1974. Ganglionic Transmission. In: The Peripheral Nervous System, ed. Nishi, S, pp. 225–255, Plenum Press.Google Scholar
  21. Pennefather, P., Lancaster, B. and Adams, P.R. and Nicoll, R.A. 1985. Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc. Natl. Acad. Sci. 82: 3040–3044.PubMedCrossRefGoogle Scholar
  22. Ramey, G. and Lazdunski. M. 1984. The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem. Biophys. Res. Comm. 118: 669–674.CrossRefGoogle Scholar
  23. Weight, F.F. and Votava, J. 1970. Slow synaptic excitation in sympathetic ganglion cells: Evidence for synaptic inactivation of potassium conductance. Science 170: 755.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • P. Shinnick-Gallagher
    • 1
  • K. Hirai
    • 1
  • J. P. Gallagher
    • 1
  1. 1.Department of PharmacologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations