Advertisement

Modulation by Neurotransmitters of the Nicotinic Transmission in the Vertebrates

  • Kyozo Koketsu

Abstract

In the course of cholinergic nicotinic transmission, acetylcholine (ACh) is released from presynaptic membrane when an action potential arrives at the cholinergic nerve terminals. ACh released from presynaptic membrane crosses by diffusion the narrow synaptic cleft and reaches the subsynaptic membrane which is a part of postsynaptic membrane. At the subsynaptic membrane ACh binds with the nicotinic ACh receptor which is endowed with a specific and characteristic protein structure. Binding of ACh with specific binding sites of the ACh receptor induces a sudden molecular conformational change of the receptor protein, resulting in an opening of ionic channels which are imbedded in the protein structure of ACh receptor. Opening of the ionic channel causes an influx of extracellular Na+ and a simultaneous outflux of intracellular K+. Consequently, the postsynaptic ionic current (excitatory postsynaptic current; EPSC) carried by Na+ and K+ initiates the nicotinic excitatory postsynaptic potential (EPSP).

Keywords

Sympathetic Ganglion Luteinizing Hormone Release Hormone Quantal Content Cholinergic Nerve Terminal Ganglionic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasu, T., Hirai, K. and Koketsu, K., 1981a. 5-Hydroxytryptamine controls ACh-receptor sensitivity of bullfrog sympathetic ganglion cells. Brain Res., 211: 217–220.PubMedCrossRefGoogle Scholar
  2. Akasu, T., Hirai, K. and Koketsu, K., 1981b. Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity. Br. J. Pharmacol., 74: 505–507.PubMedGoogle Scholar
  3. Akasu, T., Hirai, K. and Koketsu, K., 1982. Modulatory effect of ATP on the release of acetylcholine from presynaptic nerve terminals in bullfrog sympathetic ganglia. Kurume Med. J., 29: 75–83.Google Scholar
  4. Akasu, T., Hirai, K. and Koketsu, K., 1983a. Modulatory actions of ATP on nicotinic transmission in bullfrog sympathetic ganglia. In: “Physiology and Pharmacology of Adenosine Derivatives”. J.W. Daly, Y. Kuroda, J.W. Phillis, H. Shimizu and M. Ui, eds., Raven Press, New York.Google Scholar
  5. Akasu, T., Kojima, M. and Koketsu, K., 1983b. Luteinizing hormone- releasing hormones modulates nicotinic ACh-receptor sensitivity in amphibian cholinergic transmission. Brain Res., 279: 347–351.PubMedCrossRefGoogle Scholar
  6. Akasu, T., Kojima, M. and Koketsu, K., 1983c. Modulatory effect of luteinizing hormone-releasing hormone and substance P on the nicotinic transmission in bullfrog sympathetic ganglia. J. Physiol. Soc. Japan, 45: 418.Google Scholar
  7. Akasu, T., Kojima, M. and Koketsu, K., 1983d. Substance P modulates the sensitivity of the nicotinic receptor in amphibian cholinergic transmission. Br. J. Pharmacol., 80: 123–131.PubMedGoogle Scholar
  8. Akasu, T. and Koketsu, K., 1985. Effect of adenosine triphosphate on the sensitivity of the nicotinic acetylcholine-receptor in the bullfrog sympathetic ganglion cell. Br. J. Pharmacol., 84: 525–531.PubMedGoogle Scholar
  9. Christ, D.D. and Nishi, S., 1971a. Site of adrenaline blockade in the superior cervical ganglion of the rabbit. J. Physiol., 213:107– 11 7.Google Scholar
  10. Christ, D.D. and Nishi, S., 1971b. Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit. Br. J. Pharmacol., 41: 331–338.PubMedGoogle Scholar
  11. Colomo, F., Rahamimoff, R. and Stefani, E., 1968. An action of 5- hydroxytryptamine on the frog motor end-plate. Eur. J. Pharmacol., 3: 272–274.PubMedCrossRefGoogle Scholar
  12. Dun, N.J. and Karczmar, A.G., 1981. Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine in a mammalian sympathetic ganglion. J. Pharmacol. Exp. Ther. 217: 714–718.PubMedGoogle Scholar
  13. Dun, N.J. and Nishi, S., 1974. Effects of dopamine on the superior cervical ganglion of the rabbit. J. Physiol., 239: 155–164.PubMedGoogle Scholar
  14. Eccles, J.C., 1964. “The Physiology of Synapses”, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  15. Ewald, D.A., 1976. Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides. J. Membr. Biol., 29: 47–65.PubMedCrossRefGoogle Scholar
  16. Ginsborg, B.L., 1971. On the presynaptic acetylcholine receptors in sympathetic ganglia of the frog. J. Physiol., 216: 237–246.PubMedGoogle Scholar
  17. Ginsborg, B.L. and Guerrero, S., 1964. On the action of depolarizing drugs on sympathetic ganglion cells of the frog. J. Physiol., 172: 189–206.PubMedGoogle Scholar
  18. Ginsborg, B.L. and Hirst, G.D.S., 1972. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol., 224: 629–645.PubMedGoogle Scholar
  19. Hirai, K. and Koketsu, K., 1980. Presynaptic regulation of the release of acetylcholine by 5-hydroxytryptamine. Br. J. Pharmacol., 70: 499–500.PubMedGoogle Scholar
  20. Jenkinson, D.H., Stamenovic, B. A. and Whitaker, B.D.L., 1968. The effect of noradrenaline on the end-plate potential in twitch fibres of the frog. J. Physiol., 195: 743–754.PubMedGoogle Scholar
  21. Kaibara, K., Kuba, K., Koketsu, K. and Karczmar, A.G., 1978. The mode of action of fluoride ions on neuromuscular transmission in frogs. Neuropharmacology, 17: 335–339.PubMedCrossRefGoogle Scholar
  22. Karczmar, A.G., Koketsu, K. and Soeda, S., 1968. Possible reactivating and sensitizing action of neuromyally acting agents. Int. J, Neuropharmacol., 7: 241–252.CrossRefGoogle Scholar
  23. Kato, E. and Kuba, K., 1980. Inhibition of transmitter release in bullfrog sympathetic ganglia induced by γ-aminobutyric acid. J. Physiol., 298: 271–283.PubMedGoogle Scholar
  24. Kato, E., Kuba, K. and Koketsu, K., 1978. Presynaptic inhibition by -aminobutyric acid in bullfrog sympathetic ganglion cells. Brain Res., 153: 398–402.PubMedCrossRefGoogle Scholar
  25. Koketsu, K., 1981. Electropharmacological actions of catecholamine in sympathetic ganglia: Multiple modes of actions to modulate the nicotinic transmission. Jpn. J. Pharmacol. (Suppl.), 31: 27–28.Google Scholar
  26. Koketsu, K., 1984. Modulation of receptor sensitivity and action potentials by transmitters in vertebrate neurones. Jpn. J. Physiol., 34: 945–960.PubMedCrossRefGoogle Scholar
  27. Koketsu, K. and Akasu, T., 1985. Postsynaptic modulation. In: “Autonomic and Enteric Ganglia”, A.G. Karczmar, K. Koketsu and S. Nishi, eds., pp. 273–295, Plenum Press, N.Y.Google Scholar
  28. Koketsu, K., Akasu, T., Miyagawa, M. and Hirai, K., 1982a. Modulation of nicotinic transmission by biogenic amines in bullfrog sympathetic ganglia. J. Auton. Nerv. Syst., 6: 47–53.PubMedCrossRefGoogle Scholar
  29. Koketsu, K. and Karczmar, A.G., 1985. General concepts of ganglionic transmission and modulation. In: “Autonomic and Enteric Ganglia”, A.G. Karczmar, K. Koketsu and S. Nishi, Eds., pp. 63–77, Plenum Press, N.Y., 1985.Google Scholar
  30. Koketsu, K., Miyagawa, M. and Akasu, T., 1982b. Catecholamine modulates nicotinic ACh-receptor sensitivity. Brain Res., 236: 487–491.PubMedCrossRefGoogle Scholar
  31. Koketsu, K. and Nishi, S., 1968. Cholinergic receptors at sympathetic preganglionic nerve terminals. J. Physiol., 196: 293–310.PubMedGoogle Scholar
  32. Koketsu, K., Shoji, T. and Yamamoto, K., 1974. Effects of GABA on presynaptic nerve terminals in bullfrog (Rana catesbiana) sympathetic ganglia. Experientia, 30: 382–383.PubMedCrossRefGoogle Scholar
  33. Koketsu, K. and Yamada, M., 1982. Presynaptic muscarinic receptors inhibiting active acetylcholine release in the bullfrog sympathetic ganglion. Br. J. Pharmacol., 77: 75–82.PubMedGoogle Scholar
  34. Kuba, K., 1970. Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol., 211: 551–570.PubMedGoogle Scholar
  35. Kuba, K., Kato, E., Kumamoto, E., Koketsu, K. and Hirai, K., 1981. Sustained potentiation of transmitter release by adrenaline and dibutyryl cyclic AMP in sympathetic ganglia. Nature, Lond., 291: 654–656.CrossRefGoogle Scholar
  36. Kuba, K. and Tomita, T., 1971. Noradrenaline action on nerve terminal in the rat diaphragm. J. Physiol., 217: 19–31.PubMedGoogle Scholar
  37. Nakamura, M., Hayashi, H., Hirai, K. and Koketsu, K., 1974. Effect of ATP on sympathetic ganglion from bullfrogs. Jpn. J. Pharmacol. (Suppl.), 42: 134.Google Scholar
  38. Nishi, S., 1970. Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals. Fed. Proc., 29: 1957–1965.PubMedGoogle Scholar
  39. Ohta, Y., Ariyoshi, M. and Koketsu, K., 1984. Histamine as an endogenous antagonist of nicotinic ACh-receptor. Brain Res., 306: 370–373.PubMedCrossRefGoogle Scholar
  40. Ribeiro, J.A. and Walker, J., 1975. The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br. J. Pharmacol., 54: 213–218.PubMedGoogle Scholar
  41. Silinsky, E.M. and Ginsborg, B.L., 1983. Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not adenosine. Nature, Lond., 305: 327–328.CrossRefGoogle Scholar
  42. Yamada, M., Tokimasa, T. and Koketsu, K., 1982. Effects of histamine on acetylcholine release in bullfrog sympathetic ganglia. Eur. J. Pharmacol., 82: 15–20.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Kyozo Koketsu
    • 1
  1. 1.Kurume UniversityKurume 830Japan

Personalised recommendations