Synaptic Mechanisms for Long-Term Potentiation in Sympathetic Ganglia

  • Donald A. McAfee
  • Clark A. Briggs
  • Richard E. McCaman
  • David G. McKenna


It is now accepted by neurobiologists and behaviorists alike that one process essential to adaptive behavior is the modulation of synaptic efficacy. This interconnecting link between neurons is clearly the site of multitudinous mechanisms that either regulate the release of neurotransmitters from presynaptic terminals or the efficacy of their reception at the postsynaptic receptor and membrane.


Sympathetic Ganglion Superior Cervical Ganglion Compound Action Potential Tetanic Stimulation Synaptic Efficacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrett, E.F., and Magleby, K.L., 1976, Physiology of cholinergic transmission, in: “Biology of Cholinergic Function”, A.M. Goldberg and I. Hanin, eds., Raven Press, New York.Google Scholar
  2. Barrionuevo, G., and Brown, T.H., 1983, Associative long-term potentiation in hippocampal slices, Proc. Natl. Acad. Sci. USA, 80: 7347.PubMedCrossRefGoogle Scholar
  3. Baxter, D.A., Bittner, G.D., and Brown, T.H., 1985, Quantal analysis of long-term synaptic potentiation, Proc. Natl. Acad. Sci USA, (in press).Google Scholar
  4. Birks, R.I., 1977, A long-lasting potentiation of transmitter release related to an increase in transmitter stores in a sympathetic ganglion, J. Physiol. 271: 847.PubMedGoogle Scholar
  5. Bliss, T.V.P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. 232: 331.PubMedGoogle Scholar
  6. Bliss, T.V.P., Goddard, G.V., and Riives, M., 1983, Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines, J. Physiol. 334: 475.PubMedGoogle Scholar
  7. Briggs, C.A., Brown, T.H., and McAfee, D.A., 1985a, Neurophysiology and pharmacology of long-term potentiation in the rat sympathetic ganglion, J. Physiol. 359: 503.PubMedGoogle Scholar
  8. Briggs, C.A., McAfee, D.A., and McCaman, R.E., 1985b, Long-term potentiation of synaptic acetylcholine release in the rat superior cervical ganglion, J. Physiol, in press.Google Scholar
  9. Brown, D.A., Brownstein, M.D., and Scholfield, C.N., 1972, Origin of the after-hyperpolarization that follows removal of depolarizing agents from the isolated superior cervical ganglion of the rat, Br. J. Pharmacol. 44: 651.PubMedGoogle Scholar
  10. Brown, T.H., and McAfee, D.A., 1982, Long-term synaptic potentiation in the superior cervical ganglion, Science 215: 1411.PubMedCrossRefGoogle Scholar
  11. Collier, B., Kwok, Y.N., and Welner, D.A., 1983, Increased acetylcholine synthesis and release following presynaptic activity in a sympathetic ganglion, J. Neurochem. 40: 91.PubMedCrossRefGoogle Scholar
  12. Dolphin, A.C., Errington, M.L., and Bliss, T.V.P., 1982, Long-term potentiation of the perforant path in vivo is associated with increased glutamate release, Nature 297: 496.PubMedCrossRefGoogle Scholar
  13. Dunant, Y., and Dolivo, M., 1968, Plasticity of synaptic functions in the exised sympathetic ganglion of the rat, Brain Res. 10: 272.Google Scholar
  14. Dunwiddie, T.V., Roberson, N.L., and Worth, T., 1982, Modulation of long-term potentiation. Effects of adrenergic and neuroleptic drugs, Pharmacol. Biochem. Behav. 17: 1257.PubMedCrossRefGoogle Scholar
  15. Hirst, G.D., 1981, Post-tetanic potentiation and facilitation of synaptic potentials evoked in cat spinal motoneurones, J. Physiol. 321: 97.PubMedGoogle Scholar
  16. Hopkins, W.F., and Johnston, D., 1984, Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus, Science 226: 350.PubMedCrossRefGoogle Scholar
  17. Kandel, E.R., and Schwartz, J.H., 1982, Molecular biology of learning: modulation of transmitter release, Science 218: 433.PubMedCrossRefGoogle Scholar
  18. Kuba, K., and Koketsu, K., 1978, Synaptic events in sympathetic ganglia, Prog, in Neurobiol. 11: 77.CrossRefGoogle Scholar
  19. Kuba, K., Kato, E., Kumamoto, E., Koketsu, K., and Hirai, K., 1981, Sustained potentiation of transmitter release by adrenaline and dibutyryl cyclic AMP in sympathetic ganglia, Nature 291: 654.PubMedCrossRefGoogle Scholar
  20. Kumamoto, E., and Kuba, K., 1983, Sustained rise in ACh sensitivity of a sympathetic ganglion induced by post-synaptic electrical activities, Nature 305: 145.PubMedCrossRefGoogle Scholar
  21. Larrabee, M.G., and Posternak, J.M., 1952, Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia, J. Neurophysiol. 15: 91.PubMedGoogle Scholar
  22. Libet, B., Kobayashi, H., Tanaka, T., 1975, Synaptic coupling into the production and storage of a neuronal memory trace, Nature 258: 155.PubMedCrossRefGoogle Scholar
  23. Libet, B., and Tosaka, T., 1970, Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: A different mode of synaptic action, Proc. Natl. Acad. Sci. USA 67: 667.PubMedCrossRefGoogle Scholar
  24. McAfee, D.A., 1982, The superior cervical ganglion: Physiological considerations, in: “Progress in Cholinergic Biology”, I. Hanin and A.M. Goldberg, eds., Raven Press, New York.Google Scholar
  25. McNaughton, B.L., 1982, Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms, J. Physiol. 324: 249.PubMedGoogle Scholar
  26. Sacchi, O., Consolo, S., Peri, G., Prigioni, I., Ladinsky, H., and Perri, V., 1978, Storage and release of acetylcholine in the isolated superior cervical ganglion of the rat, Brain Res. 151: 443.PubMedCrossRefGoogle Scholar
  27. Skrede, K.K., and Malthe-Sorenssen, D., 1981, Increased resting and evoked release of transmitter following repetitive tetanization in hippocampus: a biochemical correlate to long-lasting synaptic potentiation, Brain Res. 208: 436.PubMedCrossRefGoogle Scholar
  28. Swanson, L.W., Teyler, T.J., and Thompson, R.F., 1982, Hippocampal long-term potentiation: Mechanisms and implications for memory, Neurosci. Res. Prog. Bull. 20: 613.Google Scholar
  29. Teyler, T.J., and Discenna, P., 1984, Long-term potentiation as a candidate mnemonic device, Brain Res. Rev. 7: 15.CrossRefGoogle Scholar
  30. Voile, R.L., 1966, Modification by drugs of synaptic mechanisms in autonomic ganglia, Pharmacol. Rev. 18: 839.Google Scholar
  31. Walters, E.T., and Byrne, J.H., 1985, Long-term enhancement produced by activity-dependent modulation of Aplysia sensory neurons, J. Neurosci. 5: 662.PubMedGoogle Scholar
  32. Zengel, J.E., Magleby, K.L., Horn, J.P., McAfee, D.A., and Yarowsky, P.J., 1980, Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit, J. Gen. Physiol. 76: 213.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Donald A. McAfee
    • 1
  • Clark A. Briggs
    • 1
  • Richard E. McCaman
    • 1
  • David G. McKenna
    • 1
  1. 1.Division of NeurosciencesBeckman Research Institute of the City of HopeDuarteUSA

Personalised recommendations