Advertisement

Presynaptic Modulation of Cortical Acetylcholine Release: Influence of Age and Adenosine

  • F. Pedata
  • L. Giovannelli
  • M. G. Giovannini
  • G. Pepeu

Abstract

Histochemical and neurochemical investigations demonstrate that the mammalian cerebral cortex contains a diffuse cholinergic network formed prevalently by nerve endings whose somata are located in the basal forebrain nuclei (Mesulam et al., 1983; Wainer et al., 1984). Minor contributions to the cortical cholinergic network are due to a direct projection from the large choline acetyltransferase (ChAT) immunoreactive cells in the pontomesencephalon (Mesulam et al., 1983) and, in the rat, by interneurons scattered throughout all cellular layers in all cortices which contain approximately 30% of total ChAT (Levey et al., 1984; McGeer et al., 1984).

Keywords

Cortical Slice Choline Acetyl Transferase Presynaptic Modulation Mammalian Cerebral Cortex Basal Forebrain Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartus, R.T., Dean, R.L., Beer, B. and Lippa, A.S., 1982, The cholinergic hypothesis of geriatric memory dysfunction. Science, 217: 408.PubMedCrossRefGoogle Scholar
  2. Beani, L., Bianchi, C., Giacomelli, A. and Tamberi, F., 1978, Noradrenaline inhibition of acetylcholine release from guinea-pig brain. Eur. J. Pharmacol., 48: 179.PubMedCrossRefGoogle Scholar
  3. Corradetti, R., Kiedrowski, L., Nordstrtim, O. and Pepeu, G., 1984, Disappearance of low affinity adenosine binding sites in aging rat cerebral cortex and hippocampus. Neurosci. Lett., 49: 143.PubMedCrossRefGoogle Scholar
  4. Daly, J.W., 1982, Adenosine receptors: targets for future drugs. J. Med. Chem., 25: 197.PubMedCrossRefGoogle Scholar
  5. Gibson, G.E. and Peterson, C., 1981, Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J. Neurochem., 37: 978.PubMedCrossRefGoogle Scholar
  6. Hadhazy, P. and Szerb, J.C., 1976, The effect of cholinergic drugs on 3H-acetylcholine release from slices of rat hippocampus, striatum and cortex. Brain Res., 123: 311.CrossRefGoogle Scholar
  7. Levey, A.I., Wainer, B.H., Rye, D.B., Mufson, E.J. and Mesulam, M.M., 1984, Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons. Neuroscience, 13: 341.PubMedCrossRefGoogle Scholar
  8. Mantovani, P. and Pepeu, G1981, Interactions between ionophores, Mg2+ and Ca2+ on acetylcholine formation and release in brain slices. Pharmacol. Res. Commun., 13: 175.Google Scholar
  9. McGeer, P.L., McGeer, E.G. and Peng, J.H., 1981, Choline acetyltransferase: purification and immuno istochemical localization. Life Sci., 34: 2319.CrossRefGoogle Scholar
  10. Meek, J.L., Berti1sson, L., Cheney, D.L., Zsilla, G. and Costa, E., 1977, Aging-induced changes in acetylcholine and serotonin content of discrete brain nuclei. J. Gerontol., 32: 129.Google Scholar
  11. Mesulam, M.M., Mufson, E.J., Wainer, B.H. and Levey, A.I., 1983, Central cholinergic pathway in the rat, an overview based on an alternative nomenclature (Chl - Ch6). Neurosci., 10: 1185.CrossRefGoogle Scholar
  12. Pedata, F., Antonelli, T., Lambertini, L., Beani, L. and Pepeu, G., 1983, Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophy11ine on acetylcholine release from electrically-stimulated brain slices. Neuropharmacol., 22: 609.CrossRefGoogle Scholar
  13. Pedata, F., Slavikova, J., Kotas, A. and Pepeu, G., 1983, Acetylcholine release from rat cortical slices during postnatal development and aging. Neurobiol. Aging, 4: 31.PubMedCrossRefGoogle Scholar
  14. Pedata, F., Giovannelli, L., Giovannini, M.G. and Pepeu, G., 1985, Effect of phosphatidylserine on cortical acetylcholine (ACh) release in adult and senescent rats. Abstracts Meeting on: Phospholipids in the Nervous System: Biochemical and Molecular Pharmacology. Mantova, p. 42.Google Scholar
  15. Pepeu, G., 1973, The release of acetylcholine from the brain: an approach to the study of the central cholinergic mechanisms. Progr. Neurobiol., 2: 257.CrossRefGoogle Scholar
  16. Pepeu, G., 1983, Brain acetylcholine: an inventory of our knowledge on the 50th anniversary of its discovery. Trends Pharmacol. Sci., 4: 416.CrossRefGoogle Scholar
  17. Pepeu, G., Giovannelli, L., Giovannini, M.G. and Pedata, F., Effect of phosphatidylserine on cortical acetylcholine release and calcium uptake in adult and aging rats. in: “Phospholipids in the nervous system” L.A. Horrock, G. Toffano and L. Freyz ed., Fidia Research Series, Liviana Press, Padova, in press.Google Scholar
  18. Peterson, C. and Gibson, G.E., 1983, Aging and 3, 4-diaminopyridine alter synaptosomal calcium uptake. J. Biol. Chem., 258: 11482.PubMedGoogle Scholar
  19. Sherman, K.A., Kuster, J.E., Dean, R.L., Bartus, R.T. and Friedman, E., 1981, Presynaptic cholinergic mechanisms in brain of aged rats with memory impairments. Neurobiol. Aging, 2: 99.PubMedCrossRefGoogle Scholar
  20. Sims, N.R., Bowen, D.M. and Davison, A.N., 1981, 14C acetylcholine synthesis and 14C carbon dioxide production from U–14C glucose by tissue prisms from human neocortex. Biochem. J., 196: 867.PubMedGoogle Scholar
  21. Stone, T.W., 1981, Physiological roles for adenosine and adenosine 51-triphosphate in the nervous system. Neurosci., 6: 523.CrossRefGoogle Scholar
  22. Szerb, J.C., 1967, Cortical acetylcholine release and electroencephalographic arousal. J. Physiol., 192: 329.PubMedGoogle Scholar
  23. Virus, R.M., Baglajewski, T. and Radulovacki, M., 1983, Adenosine receptor binding in whole brains from young and old rats. Abstracts Soc. Neurosci., 9: 1202.Google Scholar
  24. Vizi, E.S., 1979, Presynaptic modulation of neurochemical transmission. Progr. Neurobiol., 12: 181.CrossRefGoogle Scholar
  25. Wainer, B.H., Levey, A.I., Mufson, E.J. and Mesulam, M.M., 1984, Cholinergic system in mammalian brain identified with antibodies against choline acetyl transferase. Neurochem. Int., 6: 163.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • F. Pedata
    • 1
  • L. Giovannelli
    • 1
  • M. G. Giovannini
    • 1
  • G. Pepeu
    • 1
  1. 1.Department of PharmacologyUniversity of FlorenceFlorenceItaly

Personalised recommendations