Advertisement

Distribution of Cholinergic Neurons in Human Brain

  • P. L. McGeer
  • E. G. McGeer
  • K. Mizukawa
  • H. Tago
  • J. H. Peng

Abstract

Acetylcholine (ACh) was the first neurotransmitter to be identified, ushering in the modern concept of chemical transmission in the nervous system. Nevertheless, for many years information regarding cholinergic pathways, particularly in the central nervous system, lagged behind several other neurotransmitters because of technical difficulties in cellular localization of cholinergic structures. Initial information came from measurements of the effects of various lesions on the levels of ACh or its specific synthesizing enzyme, choline acetyltransferase (ChAT), and from histochemical studies on the degrading enzyme, acetylcholinesterase (AChE)1. The best early application of the latter method was in the papers of Shute and Lewis 2,3. Unfortunately, although AChE has a relatively high concentration in known cholinergic structures4-8, it also occurs in non-cholinergic cells8-9. Suppression of AChE with DFP has done much to separate cholinergic from non-cholinergic AChE-containing cells5-10 but, since some of the latter contain anomalously high concentrations of AChE, the method cannot be relied upon as a definitive method for identifying cholinergic structures. Moreover, the DFP pretreatment suppresses fiber staining, thus reducing the potential for tracing pathways. A more definitive method depends upon immunohistochemical staining using antibodies to the selective enzyme, ChAT11. Although the purification of ChAT has been fraught with difficulty and many of the antibodies prepared are of relatively low titer, the method has allowed much to be learned about ChAT-containing structures in the brain. Much fundamental information remains to be elicited and a number of controversies have developed around existing reports, but the data already available have permitted new insights into cholinergic pharmacology and the relationship between a number of disease processes and cholinergic systems.

Keywords

Cholinergic Neuron Basal Forebrain Reticular Formation Cholinergic System Choline Acetyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. McGeer and E. G. McGeer, Chlinergic system and cholinergic 379–410.Google Scholar
  2. C. C. D. Shute and P. R. Lewis, Chlonesterase the brain of the rat, Nature 199: 1160 (1963)PubMedCrossRefGoogle Scholar
  3. 3.
    P. R. Lewis and C. C. D. Shute, The cholinergic limbic system: Projections to the hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supraoptic crest, Brain 90: 521 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    V. Bigl, N. J. Woolf and L. L. Butcher, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis, Brain Res. Bull. 8: 727 (1982).Google Scholar
  5. 5.
    L. L. Butcher, R. Marchand, A. Parent and L. J. Poirier, Morphologicalcharacteristics of acetylcholinesterase-containing neurons in the CNS of DFP-treated monkeys. Part 3. Brain stem and spinal cord, J. Neurol. Sci. 32: 169 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Parent, L. J. Poirier, R. Boucher and L. L. Butcher, Morphological characteristics of acetylcholinesterase containing neurons in the CNS of DFP-treated monkeys. Part 2. Diencephalic and medial telen- cephalic structures, J. Neurol. Sci. 32: 9 (1977).PubMedCrossRefGoogle Scholar
  7. A. Parent, L. J. Poirier, R. Boucher and L. L. Butcher, Morphological characteristics of acetylcholinesterase containing neurons in the CNS of DFP-treated monkeys. Part 2. Diencephalic and medial telen- cephalic structures, J. Neurol. Sci. 32: 9 (1977).Google Scholar
  8. 7.
    L. J. Poirier, A. Parent, R. Marchand and L. L. Butcher, Morphological characteristics of acetylcholinesterase containing neurons in the CNS of DFP-treated monkeys. Part 1. Extrapyramidal and related structures, J. Neurol. Sci. 31: 181 (1977).PubMedCrossRefGoogle Scholar
  9. 8.
    K. Satoh, D. M. Armstrong and H. C. Fibiger, A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry, Brain. Res. Bull. 11: 693 (1983).CrossRefGoogle Scholar
  10. 9.
    F. Eckenstein and M. V. Sofroniew, Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase, J. Neurosci. 3: 2286 (1983).PubMedGoogle Scholar
  11. 10.
    J. Lehmann and H. C. Fibiger, Minireview: Acetylcholinesterase and the cholinergic neuron, Life Sci. 25: 1939 (1979).PubMedCrossRefGoogle Scholar
  12. 11.
    P. L. McGeer, E. G. McGeer and J. H. Peng, Choline acetyltransferase purification and immunohistochemical localization, Life Sci. 34: 2319 (1984).PubMedCrossRefGoogle Scholar
  13. 12.
    P. L. McGeer, E. G. McGeer, J. Suzuki, C. E. Dolman and T. Nagai, Aging, Alzheimers disease and the cholinergic system of the basal forebrain, Neurology, 34: 741 (1984).PubMedCrossRefGoogle Scholar
  14. 13.
    P. J. Whitehouse, D. L. Price, R. G. Struble, A. W. Clark, J. T. Coyle and M. R. De Long, Alzheimers disease and senile dementia: loss of neurons in the basal forebrain, Science 215: 1237 (1982).PubMedCrossRefGoogle Scholar
  15. 14.
    Y. Nagata, M. Okuya, R. Watanabe and M. Honda, Regional distribution of cholinergic neurons in human spinal cord transections in the patients with and without motor neuron disease, Brain Res. 244: 223 (1982).PubMedCrossRefGoogle Scholar
  16. 15.
    P. J. Whitehouse, J. C. Hedreen, C. L. White and D. L. Price, Basal forebrain neurons in the dementia of Parkinson disease, Ann. Neurol. 13: 143 (1983).CrossRefGoogle Scholar
  17. 16.
    D. Bodian, in: “Pathology of the Nervous System” J. Minckler (ed), McGraw Hill, New York (1972) pp 2323 - 2344.Google Scholar
  18. 17.
    H. Kimura, Y. Kaneko and J. A. Wada, Catecholamine and cholinergic systems and amygdala kindling, in: “Kindling 2” J.A. Wada, ed., Raven Press, New York (1981) pp. 265 - 287.Google Scholar
  19. 18.
    S. Fahn, High dosage anticholinergic therapy in dystonia, Neurology, 33: 1255 (1983).PubMedCrossRefGoogle Scholar
  20. 19.
    S. Guibaud, A. Simplot and A. Mercatello, CSF acetylcholinesterase in Guillain-Barre syndrome, Lancet 2: 1456 (1982).PubMedCrossRefGoogle Scholar
  21. 20.
    D. S. Janowsky and S. C. Risch, Cholinomimetic and anticholinergic used to investigate an acetylcholine hypothesis of affective disorders and stress, Drug Develop. Res. 4: 125 (1984).Google Scholar
  22. 21.
    H. Kimura, P. L. McGeer, J. H. Peng and E. G. McGeer, The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat, J. Comp. Neurol. 200: 151 (1981).PubMedCrossRefGoogle Scholar
  23. 22.
    D. M. Armstrong, C. B. Saper, A. I. Levey, B. H. Wainer and R. D. Terry, Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase, J. Comp. Neurol. 216: 53 (1983).PubMedCrossRefGoogle Scholar
  24. 23.
    C. R. Houser, G. D. Crawford, R. P. Barber, P. M. Salvaterra and J. E. Vaughn, Organization and morphological characterstics of cholinergic neurons: An immunocytochemical study with a monoclonal antibody to choline acetyltransferase, Brain Res. 266: 97 (1983).Google Scholar
  25. 24.
    H. Kimura, P. L. McGeer and J. H. Peng, Choline acetyltransferase containing neurons in the rat brain, in: Handbook of Chemical Neuroanatomy, Vol. 3, A. Bjorklund, T. Hokfelt and M.J. Kuhar, eds., Elsevier Scientific Publishing Co., Amsterdam (1984) pp. 51–67.Google Scholar
  26. 25.
    A. I. Levey, B. H. Wainer, E. J. Mufson and M. M. Mesulam, Co localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum, Neuroscience 9: 9 (1983).PubMedCrossRefGoogle Scholar
  27. 26.
    M. V. Sofroniew, F. Eckenstein, H. Thoenen and A. C. Cuello, Topography of choline acetyltransferase-containing neurons in the forebrain of the rat, Neurosci. Lett. 33: 7 (1982).Google Scholar
  28. 27.
    C. R. Houser, G. D. Crawford, P. M. Salvaterra and J. E. Vaughn, Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses, J. Comp. Neurol. 234: 17 (1985).PubMedCrossRefGoogle Scholar
  29. 28.
    J. C. Hedreen, S. J. Bacon, L. C. Cork, C. A. Kitt, G. D. Crawford, P. M. Salvaterra and D. L. Price, Immunocytochemical identification of cholinergic neurons in the monkey central nervous system using monoclonal antibodies against choline acetyltransferase, Neurosci. Lett. 43: 173 (1983).Google Scholar
  30. 29.
    M. M. Mesulam, E. J. Mufson, A. I. Levey and B. H. Wainer, Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214: 170 (1983).PubMedCrossRefGoogle Scholar
  31. 30.
    M. M. Mesulam, E. J. Mufson, A. I. Levey and B. H. Wainer, Atlas of cholinergic neurons in the forebrain and upper brainstem of the mac- que based on monoclonal choline acetyltransferse immunohistochemistry and acetylcholinesterase histochemistry, Neuroscience 12: 669 (1984).PubMedCrossRefGoogle Scholar
  32. 31.
    K. Satoh and H. C. Fibiger, Distribution of central cholinergic neurons in the baboon (Papio papio). I. General morphology, J. Comp. Neurol. 236: 197 (1985).Google Scholar
  33. 32.
    K. Mizukawa, P. L. McGeer, H. Tago, J. H. Peng, E. G. McGeer and H. Kimura, The cholinergic system of the human hindbrain studied by choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry, Brain Res. (in press).Google Scholar
  34. 33.
    D. A. Matthews, P. M. Salvaterra, G. D. Crawford, C. R. Houser and J. E. Vaughn, Distribution of choline acetyltransferase positive neurons and terminals in hippocampus, Soc. Neurosci. Abstrs. 9: 79 (1983).Google Scholar
  35. 34.
    M. V. Sofroniew, F. Eckstein, H. Thoenen and A.C. Cuello, Immunohistochemistry of choline acetyltransferase in the rat brain, Soc. Neurosci. Abstrs 8: 516 (1982).Google Scholar
  36. 35.
    T. Hattori, E. G. McGeer, V. K. Singh and P. L. McGeer, Cholinergic synapse of the interpeduncular nucleus, Exp. Neurol. 55: 666 (1977).Google Scholar
  37. 36.
    T. Nagai, T. Pearson, J. H. Peng, E. G. McGeer and P. L. McGeer, Immunohistochemical staining of the human forebrain with monoclonal antibody to human choline acetyltransferase, Brain Res. 265: 300 (1983).PubMedCrossRefGoogle Scholar
  38. 37.
    T. Nagai, P. L. McGeer, J. H. Peng, E. G. McGeer and C. E. Dolman, Choline acetyltransferase immunohistochemistry in brains of Alzheimer’s disease patients and controls, Neurosci. Lett. 36: 195 (1983).PubMedCrossRefGoogle Scholar
  39. 38.
    P. L. McGeer, Aging, Alzheimer’s disease and the cholinergic system, Can. J. Physiol. Pharmacol. 52: 741 (1984).CrossRefGoogle Scholar
  40. 39.
    J. C. Hedreen, R. G. Struble, P. J. Whitehouse and D.P. Price, Topography of the magnocellular basal forebrain system in human brain, J. Neuropath. Exp. Neurol. 43: 1 (1984).PubMedCrossRefGoogle Scholar
  41. 40.
    M. F. Pare, B. E. Jones and A. Beaudet, Application of a selective retrograde labeling technique to the identification of acetylcholine subcortispinal neurons, Soc. Neurosci. Abstrs. 8: 517 (1982).Google Scholar
  42. 41.
    M. J. Karnovsky and L. Roots, A direct-coloring thiocholine method for cholinesterase, J. Histochem. Cytochem. 12: 219 (1964).PubMedCrossRefGoogle Scholar
  43. 42.
    D. A. Drachman and J. Leavitt, Human memory and the cholinergic system: a relationship to aging? Arch. Neurol. 30: 113 (1974).Google Scholar
  44. 43.
    D. J. Safer and R. P. Allen, The central effects of scopolamine in man, Biol. Psychiatry 3: 347 (1971).Google Scholar
  45. 44.
    J. A. Deutsch, The cholinergic synapse and the site of memory, Science 174: 788 (1971).PubMedCrossRefGoogle Scholar
  46. 45.
    K. L. Davis, R. C. Mohs and J. R. Tinklenberg, Enhancement of memory by physostigmine, New Eng. J. Med. 301: 946 (1979).Google Scholar
  47. 46.
    R. T. Bartus, R. L. Dean, B. Beer and A. S. Lippa, The cholinergic hypothesis of geriatric memory dysfunction, Science 217: 408 (1979).CrossRefGoogle Scholar
  48. 47.
    D. M. Bowen, C. B. Smith, P. White and A. N. Davison, Neurotransmitter- related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain 99: 459 (1976).PubMedCrossRefGoogle Scholar
  49. 48.
    P. Davies and A. J. R. Maloney, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 1976ii:1403.Google Scholar
  50. 49.
    E. K. Perry, R. H. Perry, G. Blessed and B. E. Tomlinson, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet 1977i: 189.Google Scholar
  51. 50.
    P. J. Whitehouse, D. L. Price, A. W. Clark, J. T. Coyle and M. R. Delong, Alzheimers disease: evidence for selective loss of cholinergic neurons dn the nucleus basalis, Ann. Neurol. 10: 122 (1981).PubMedCrossRefGoogle Scholar
  52. 51.
    P. Davies and A. H. Verth, Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s type dementia brains, Brain Res. 138: 385 (1978).CrossRefGoogle Scholar
  53. 52.
    W. Lang and H. Henke, Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer’s type patients, Brain Res. 267: 271 (1983).PubMedCrossRefGoogle Scholar
  54. 53.
    J. M. Palacios, Autoradiographic localization of muscarinic cholinergic receptors in the hippocampus of patients with senile dementia, Brain Res. 243: 173 (1982).PubMedCrossRefGoogle Scholar
  55. 54.
    P. White, M.J. Goodhardt, J. P. Kent, C. R. Hiley, L. H. Carrasco, I. E. Williams and D. M. Bowen, Neocortical cholinergic neurons in elderly people, Lancet 1977i: 668.Google Scholar
  56. 55.
    D. W. Kay, K. Bergman, E. M. Foster, A. A. McKechnie and M. Roth, Mental illness and hospital usage in the elderly: a random sample followed up, Compr. Psychiat. 11: 26 (1970).Google Scholar
  57. 56.
    J. E. Christie, A. Shering, J. Ferguson and A. I. Glen, Physostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia, Br. J. Psychiatry 138: 46 (1981).PubMedCrossRefGoogle Scholar
  58. 57.
    P. L. McGeer, J. C. Boulding, W. C. Gibson and R. G. Foulkes, Drug induced extrapyramidal reactions, J. Am. Med. Assoc. 177: 665 (1961).CrossRefGoogle Scholar
  59. 58.
    P. L. McGeer, Central amines and extrapyramidal functions, J. Neuropsych. 4: 247 (1963).Google Scholar
  60. 59.
    P. L. McGeer, E. G. McGeer, H. C. Fibiger and V. Wickson, Neostriatal choline acetylase and cholinesterase following selective brain lesions, Brain Res. 35: 308 (1971).PubMedCrossRefGoogle Scholar
  61. 60.
    K. Voshart and D. van der Kooy, The organization of the efferent projections of the parabrachial nucleus to the forebrain in the rat: a retrograde fluorescent study, Brain Res. 212: 271 (1981).PubMedCrossRefGoogle Scholar
  62. 61.
    S. Nomura, N. Mizuno, K. Itoh, K. Matsuda, T. Sugimoto and Y. Nsksmurs, Localization of parabrachial nucleus neurons projecting to the thalamus or the amygdala in the cat using horseradish peroxidase, Exp. Neurol. 64: 375 (1979).Google Scholar
  63. 62.
    R. Norgren, Taste pathways to the hypothalamus and amygdala, J. Comp. Neurol. 166: 17 (1976).PubMedCrossRefGoogle Scholar
  64. 63.
    M. B. Carpenter and J. Sutin, Human Neuroanatomy, 8th edition, Williams and Wilkins, Baltimore (1983) p. 291, 296, 334, 372.Google Scholar
  65. 64.
    F. Bertrand and A. Hugelin, Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms, J. Neurophysiol. 34: 189 (1971).PubMedGoogle Scholar
  66. 65.
    E. K. Bystrzycka, Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the horseradish peroxidase technique, Brain Res. 185: 59 (1971).CrossRefGoogle Scholar
  67. 66.
    S. Mraovitch, M. Kumada and D. J. Reis, Role of the nucleus parabrachialis in cardiovascular regulation in cat, Brain Res. 232: 57 (1982).PubMedCrossRefGoogle Scholar
  68. 67.
    A. G. Karczmar, Basic phenomena underlying novel use of cholinergic agents, anticholinesterases and precursors in neurological including peripheral and psychiatric disease, Adv. Behav. Biol. 25: 853 (1981).Google Scholar
  69. 68.
    E. G. McGeer, W. A. Staines and P. L. McGeer. Neurotransmitters in the basal ganglia, Can. J. Neurol. Sci. 11: 89 (1984).Google Scholar
  70. 69.
    S. Flodmark and T. Wramner, The analgetic action of morphine, eserine and prostigmine studied by a modified Hardy-Wolff-Goodell method, Acta Physiol. Scand. 9: 88 (1945).Google Scholar
  71. 70.
    D. Slaughter and E. G. Gross, Some new aspects of morphine action. Effect on intestine and blood pressure; toxicity studies, J. Pharmacol. Exp. Ther. 68: 96 (1940).Google Scholar
  72. 71.
    G. L. Koehn, G. Henderson and A. G. Karczmar, Diisopropyl phosphorfluoridate-induced antinociception: possible role of endogenous opioids, Eur. J. Pharmacol. 61: 167 (1980).PubMedCrossRefGoogle Scholar
  73. 72.
    N. W. Pedigo and W. L. Dewey, Acetylcholine induced antinociception: mcomparisons to opiate analgesia, Adv. Behav. Biol. 25: 795 (1981).Google Scholar
  74. 73.
    J. A. Hobson, M. Goldberg, E. Vivadi and D. Riew, Enhancement of desynchronized sleep signs after pontine microinjection of the muscarinic agonist bethanechol, Brain Res. 275: 127 (1983).PubMedCrossRefGoogle Scholar
  75. 74.
    M. Jouvet, Telencephalic and rhombencephalic sleep in the cat, in: The Nature of Sleep, G. E. W. Wolstenholme and M. O’Connor, eds. J.A. Churchill, London (1961) pp. 188–208,.Google Scholar
  76. 75.
    N. Sitaram, R. J. Wyatt, S. Dawson and J. C. Gillin, REM sleep induction by physostigmine infusion during sleep, Science 191: 1281 (1976).PubMedCrossRefGoogle Scholar
  77. 76.
    A. Torvik and A. Brodal, The origin of reticulospinal fibers in the cat, Anat. Rec. 128: 113 (1957).Google Scholar
  78. 77.
    L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th edition, Macmillan, New York (1970) p. 541.Google Scholar
  79. 78.
    D. W. Rowntree, S. Nevin and A. Wilson, Effects of diisopropylfluorophonate in schizophrenia and manic depressive psychosis, J. Neurol. Neurosurg. Psychiat. 13: 47 (1950).PubMedCrossRefGoogle Scholar
  80. 79.
    K. L. Davis, P. A. Berger, L. E. Hollister and J. D. Barchas, Minireview: Cholinergic involvement in mental disorders, Life Sci. 22: 1865 (1978).PubMedCrossRefGoogle Scholar
  81. 80.
    C. C. Pfeiffer and E. H. Jenney, The inhibition of the conditioned response and the counteraction of schizophrenia by muscarinic stimulation of the brain, Ann. N.Y. Acad. Sci. 66: 753 (1957).PubMedCrossRefGoogle Scholar
  82. 63.
    M. B. Carpenter and J. Sutin, Human Neuroanatomy, 8th edition, Williams and Wilkins, Baltimore (1983) p. 291, 296, 334, 372.Google Scholar
  83. 64.
    F. Bertrand and A. Hugelin, Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms, J. Neurophysiol. 34: 189 (1971).PubMedGoogle Scholar
  84. 65.
    E. K. Bystrzycka, Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the horseradish peroxidase technique, Brain Res. 185: 59 (1971).CrossRefGoogle Scholar
  85. 66.
    S. Mraovitch, M. Kumada and D. J. Reis, Role of the nucleus parabrachialis in cardiovascular regulation in cat, Brain Res. 232: 57 (1982).PubMedCrossRefGoogle Scholar
  86. 67.
    A. G. Karczmar, Basic phenomena underlying novel use of cholinergic agents, anticholinesterases and precursors in neurological including peripheral and psychiatric disease, Adv. Behav. Biol. 25: 853 (1981).Google Scholar
  87. 68.
    E. G. McGeer, W. A. Staines and P. L. McGeer. Neurotransmitters in the basal ganglia, Can. J. Neurol. Sci. 11: 89 (1984).Google Scholar
  88. 69.
    S. Flodmark and T. Wramner, The analgetic action of morphine, eserine and prostigmine studied by a modified Hardy-Wolff-Goodell method, Acta Physiol. Scand. 9: 88 (1945).Google Scholar
  89. 70.
    D. Slaughter and E. G. Gross, Some new aspects of morphine action. Effect on intestine and blood pressure; toxicity studies, J. Pharmacol. Exp. Ther. 68: 96 (1940).Google Scholar
  90. 71.
    G. L. Koehn, G. Henderson and A. G. Karczmar, Diisopropyl phosphorfluoridate-induced antinociception: possible role of endogenous opioids, Eur. J. Pharmacol. 61: 167 (1980).PubMedCrossRefGoogle Scholar
  91. 72.
    N. W. Pedigo and W. L. Dewey, Acetylcholine induced antinociception: comparisons to opiate analgesia, Adv. Behav. Biol. 25: 795 (1981).Google Scholar
  92. 73.
    J. A. Hobson, M. Goldberg, E. Vivadi and D. Riew, Enhancement of desynchronized sleep signs after pontine microinjection of the muscarinic agonist bethanechol, Brain Res. 275: 127 (1983).PubMedCrossRefGoogle Scholar
  93. 74.
    M. Jouvet, Telencephalic and rhombencephalic sleep in the cat, in: The Nature of Sleep, G. E. W. Wolstenholme and M. Connor, eds. J.A. Churchill, London (1961) pp. 188–208.Google Scholar
  94. 75.
    N. Sitaram, R. J. Wyatt, S. Dawson and J. C. Gillin, REM sleep induction by physostigmine infusion during sleep, Science 191: 1281 (1976).PubMedCrossRefGoogle Scholar
  95. 76.
    A. Torvik and A. Brodal, The origin of reticulospinal fibers in the cat, Anat. Rec. 128: 113 (1957).Google Scholar
  96. 77.
    L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th edition, Macmillan, New York (1970) p. 541.Google Scholar
  97. 78.
    D. W. Rowntree, S. Nevin and A. Wilson, Effects of diisopropylfluorophonate in schizophrenia and manic depressive psychosis, J. Neurol. Neurosurg. Psychiat. 13: 47 (1950).PubMedCrossRefGoogle Scholar
  98. 79.
    K. L. Davis, P. A. Berger, L. E. Hollister and J. D. Barchas, Minireview: Cholinergic involvement in mental disorders, Life Sci. 22: 1865 (1978).PubMedCrossRefGoogle Scholar
  99. 80.
    C. C. Pfeiffer and E. H. Jenney, The inhibition of the conditioned response and the counteraction of schizophrenia by muscarinic stimulation of the brain, Ann. N.Y. Acad. Sci. 66: 753 (1957).PubMedCrossRefGoogle Scholar
  100. 63.
    M. B. Carpenter and J. Sutin, Human Neuroanatomy, 8th edition, Williams and Wilkins, Baltimore (1983) p. 291, 296, 334, 372.Google Scholar
  101. 64.
    F. Bertrand and A. Hugelin, Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms, J. Neurophysiol. 34: 189 (1971).PubMedGoogle Scholar
  102. 65.
    E. K. Bystrzycka, Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the horseradish peroxidase technique, Brain Res. 185: 59 (1971).CrossRefGoogle Scholar
  103. 66.
    S. Mraovitch, M. Kumada and D. J. Reis, Role of the nucleus parabrachialis in cardiovascular regulation in cat, Brain Res. 232: 57 (1982).PubMedCrossRefGoogle Scholar
  104. 67.
    A. G. Karczmar, Basic phenomena underlying novel use of cholinergic agents, anticholinesterases and precursors in neurological including peripheral and psychiatric disease, Adv. Behav. Biol. 25: 853 (1981).Google Scholar
  105. 68.
    E. G. McGeer, W. A. Staines and P. L. McGeer. Neurotransmitters in thebasal ganglia, Can. J. Neurol. Sci. 11: 89 (1984).Google Scholar
  106. 69.
    S. Flodmark and T. Wramner, The analgetic action of morphine, eserineand prostigmine studied by a modified Hardy-Wolff-Goodell method, Acta Physiol. Scand. 9: 88 (1945).Google Scholar
  107. 70.
    D. Slaughter and E. G. Gross, Some new aspects of morphine action. Effect on intestine and blood pressure; toxicity studies, J. Pharmacol. Exp. Ther. 68: 96 (1940).Google Scholar
  108. 71.
    G. L. Koehn, G. Henderson and A. G. Karczmar, Diisopropyl phosphorfluoridate-induced antinociception: possible role of endogenous opioids, Eur. J. Pharmacol. 61: 167 (1980).PubMedCrossRefGoogle Scholar
  109. 72.
    N. W. Pedigo and W. L. Dewey, Acetylcholine induced antinociception:comparisons to opiate analgesia, Adv. Behav. Biol. 25: 795 (1981).Google Scholar
  110. 73.
    J. A. Hobson, M. Goldberg, E. Vivadi and D. Riew, Enhancement of desynchronized sleep signs after pontine microinjection of the muscarinic agonist bethanechol, Brain Res. 275: 127 (1983).PubMedCrossRefGoogle Scholar
  111. 74.
    M. Jouvet, Telencephalic and rhombencephalic sleep in the cat, in: The Nature of Sleep, G. E. W. Wolstenholme and M. Connor, eds. J.A. Churchill, London (1961) pp. 188–208.Google Scholar
  112. 75.
    N. Sitaram, R. J. Wyatt, S. Dawson and J. C. Gillin, REM sleep induction by physostigmine infusion during sleep, Science 191: 1281 (1976).PubMedCrossRefGoogle Scholar
  113. 76.
    A. Torvik and A. Brodal, The origin of reticulospinal fibers in the cat, Anat. Rec. 128: 113 (1957).Google Scholar
  114. 77.
    L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th edition, Macmillan, New York (1970) p. 541.Google Scholar
  115. 78.
    D. W. Rowntree, S. Nevin and A. Wilson, Effects of diisopropylfluorophonate in schizophrenia and manic depressive psychosis, J. Neurol. Neurosurg. Psychiat. 13: 47 (1950).PubMedCrossRefGoogle Scholar
  116. 79.
    K. L. Davis, P. A. Berger, L. E. Hollister and J. D. Barchas, Minireview: Cholinergic involvement in mental disorders, Life Sci. 22: 1865 (1978).PubMedCrossRefGoogle Scholar
  117. 80.
    C. C. Pfeiffer and E. H. Jenney, The inhibition of the conditioned response and the counteraction of schizophrenia by muscarinic stimulation of the brain, Ann. N.Y. Acad. Sci. 66: 753 (1957).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • P. L. McGeer
    • 1
  • E. G. McGeer
    • 1
  • K. Mizukawa
    • 1
  • H. Tago
    • 1
  • J. H. Peng
    • 1
  1. 1.Kinsmen Laboratory of Neurological Research Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations