Fatty Acid Synthesis in Developing Oilseeds

  • Michael R. Pollard
  • Sheo S. Singh


De novo fatty acid synthesis (FAS) supplies fatty acids for a large variety of lipids, including membrane lipids, epiticular waxes and cutin, neutral storage lipids, and many natural products, such as acyl salicylates, polyacetylenes or macrocyclic lactones. Many of these specific lipids are found in highly differentiated plant cells, where they can often represent a major part of cell dry weight. The regulation of FAS, which in most cases supplies the same fatty acids (palmitic and oleic acids) for different end products, is therefore a key question.


Fatty Acid Synthesis Castor Bean Acyl Carrier Protein Fatty Acid Synthetase Macrocyclic Lactone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. Slack and J. A. Browse, Synthesis of storage lipids in developing seeds, in: “Seed Physiology, Volume 1. Development”, D. R. Murray, ed., Academic Press, Sydney (1984).Google Scholar
  2. 2.
    P. K. Stumpf, Biosynthesis of saturated and unsaturated fatty acids, in: “The Biochemistry of Plants: A Comprehensive Treatise. Volume 4. Lipids: Structure and Function”, P. K. Stumpf, ed., Academic Press, New York (1980).Google Scholar
  3. 3.
    P. J. Weaire and R. G. O. Kekwick, The synthesis of fatty acids in avocado mesocarp and cauliflower bud tissue, Biochem. J. 146: 425 (1975).PubMedGoogle Scholar
  4. 4.
    J. A. Miernyk and D. T. Dennis, The incorporation of glycolytic intermediates into lipids by plastids isolated from the developing endosperm of castor oil seeds (Ricinus communis L.), J. Expt. Bot. 34: 712 (1983).CrossRefGoogle Scholar
  5. 5.
    J. Browse and C. R. Slack, Fatty-acid synthesis in plastids from maturing safflower and linseed cotyledons, Planta 166: 74 (1985).CrossRefGoogle Scholar
  6. 6.
    J. B. Ohlrogge, D. N. Kuhn and P. K. Stumpf, Subcellular localisation of acyl carrier protein in leaf protoplasts of Spinacia oleracea, Proc. Natl. Acad. Sci. USA 76: 1194 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    I. Caughey and R. G. O. Kekwick, Characteristics of some components of the fatty acid synthetase system of plastids from the mesocarp of avocado (Persea americana) fruit, Eur. J. Biochem. 123: 553 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Shimakata and P. K. Stumpf, The procaryotic nature of the fatty acid synthase of developing Carthamus tinctorium L. (Safflower) seeds, Arch. Biochem. Biophys. 217: 144 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Shimakata and P. K. Stumpf, The purification and function of acetyl coenzyme A: acyl carrier protein transacylase, J. Biol. Chem. 258: 3592 (1983).PubMedGoogle Scholar
  10. 10.
    T. A. McKeon and P. K. Stumpf, Purification and characterization of the stearoyl-ACP desaturase and the acyl-ACP thioesterase from maturing seeds of saf flower, J. Biol. Chem. 257: 12141 (1982).PubMedGoogle Scholar
  11. 11.
    J.B. Ohlrogge, W. E. Shine and P. K. Stumpf, Fat metabolism in higher plants: characterization of plant acyl-ACP and acyl-CoA hydrolases, Arch. Biochem. Biophys. 189: 382 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Roughan and R. Slack, Glycerolipid synthesis in leaves, Trends Biol. Sci. 9: 383 (1984).CrossRefGoogle Scholar
  13. 13.
    D. R. Thomas, M. Noh Hj Salil, A. Ariffin, R. J. Cooke, I. McLaren, B. C. S. Yong and C. Wood, The synthesis of short-and long-chain acylcarnitine by etiochloroplasts of greening barley leaves, Planta 158: 259 (1983).CrossRefGoogle Scholar
  14. 14.
    D. T. Dennis and J. A. Miernyk, Compartmentation of nonphotosynthetic carbohydrate metabolism, Ann. Rev. Plant Physiol. 33: 27 (1982).CrossRefGoogle Scholar
  15. 15.
    Y. Satoh, Q. Usami and M. Yamada, Glucose-6-phosphate dehydrogenase in plastids from developing castor bean seeds, Plant Cell Physiol. 24: 527 (1983)Google Scholar
  16. 16.
    M. Yamada and Q. Usami, Long chain fatty acid synthesis in developing castor bean seeds. IV. The synthetic system in protoplast ids, Plant Cell Physiol. 16: 879 (1975).Google Scholar
  17. 17.
    E. E. Reid, P. Thompson, C. R. Lyttle and D. T. Dennis, Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids. Plant Physiol. 59: 842 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    S. S. Singh, T. Y. Nee and M. R. Pollard, Acetate and mevalonate labeling studies with developing Cuphea lutea seeds, Lipids 21: 143 (1986).CrossRefGoogle Scholar
  19. 19.
    D. R. Nelson and R. W. Rinne, Citrate cleavage enzyme from developing soybean cotyledons. Incorporation of citrate carbon into fatty acids. Plant Physiol. 55: 69 (1975).Google Scholar
  20. 20.
    C. A. Adams and R. W. Rinne, Interactions of phosphoenolpyruvate carboxylase and pyruvic kinase in developing soybean seeds, Plant Cell Physiol. 22: 1011 (1981).Google Scholar
  21. 21.
    R. Douce, in “Mitochondria in Higher Plants. Structure, Function, and Biogenesis,” Academic Press, Orlando (1985).Google Scholar
  22. 22.
    A. R. Slabas and A. Hellyer, Rapid purification of a high molecular weight subunit polypeptide form of rapeseed acetyl-CoA carboxylase. Plant Sci. 39: 177 (1985).CrossRefGoogle Scholar
  23. 23.
    S. A. Finlayson and D. T. Dennis, Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis. Isolation and characterization, Arch. Biochem. Biophys. 225: 576 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    S. B. Mohan and R.G.O. Kekwick, Acetyl-coenzyme A carboxylase from avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. Biochem. J. 187: 667, (1980).PubMedGoogle Scholar
  25. 25.
    K. C. Eastwell and P. K. Stumpf, Regulation of plant acetyl-CoA carboxylase by adenylate nucleotides, Plant Physiol. 72: 50 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    A. L. Urie, Inheritance of partial hull in safflower, Crop Sci. 26: 493 (1986).CrossRefGoogle Scholar
  27. 27.
    B. R. Stefansson, The development of improved rapeseed cultivars, in: “High and low erucic acid rapeseed oils. Production, usage, chemistry, and toxicological evaluation,” J. K. G. Kramer, F. D. Sauer and W. J. Pigden, eds., Academic Press, Toronto (1983).Google Scholar
  28. 28.
    M. Stitt, Fine control of sucrose synthesis by fructose-2, 6-bisphosphate, in: “Regulation of carbon partitioning in photosynthetic tissue”, R. L. Heath and J. Preiss, eds., ASPP monograph (1985).Google Scholar
  29. 29.
    E. Turnham and D. H. Northcote, Changes in the activity of acetyl-CoA carboxylase during rapeseed formation, Biochem. J. 212: 223 (1983).PubMedGoogle Scholar
  30. 30.
    S. S. Singh, T. Nee and M. R. Pollard, Neutral lipid biosynthesis in developing Cuphea seeds, in: “Structure, function and metabolism of plant lipids,” P. A. Siegenthaler and W. Eichenberger, eds., Elsevier Science Publishers, Amsterdam (1984).Google Scholar
  31. 31.
    J. B. Ohlrogge and T. M. Kuo, Control of lipid synthesis during soybean seed development: enzymic and immunochemical assay of acyl carrier protein, Plant Physiol. 74: 622 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    R. J. Ireland and D. T. Dennis, Isoenzymes of the glycolytic and pentosephosphate pathways during the development of the castor oil seed, Can. J. Bot. 59: 1423 (1981).CrossRefGoogle Scholar
  33. 33.
    J. B. Ohlrogge and T. M. Kuo, Plants have isoforms for acyl carrier protein that are expressed differently in different tissues, J. Biol. Chem. 260: 8032 (1985).PubMedGoogle Scholar
  34. 34.
    C. A. Adams, T. H. Broman and R. W. Rinne, Use of [3, 4-14C] glucose to assess in vivo competition for phosphoenolpyruvate between phosphoenolypyruvate carboxylase and pyruvate kinase in developing soybean seeds, Plant Cell Physiol. 23: 959 (1982).Google Scholar
  35. 35.
    M. L. Ernst-Fonberg, Fatty acid synthetase activity in Euglena gracelis variety bacillarius. Characterisation of an acyl carrier protein dependent system, Biochemistry 12: 2449 (1973).PubMedCrossRefGoogle Scholar
  36. 36.
    R. W. Hendren and K. Bloch, Fatty acid synthesis from Euglena gracilis. Separation of component activities of the ACP-dependent fatty acid syntehtase and partial purification of the β-ketoacyl-ACP synthetase, J. Biol. Chem. 255: 1504 (1980).PubMedGoogle Scholar
  37. 37.
    P. E. Kolattukudy, A. J. Poulose and Y. S. Kim, Malonyl-CoA decarboxylase from avian, mammalian and microbial sources, Methods Enzymol. 71: 150 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    M. D. Hatch and P. K. Stumpf, Fat metabolism in higher plants. XVII. Metabolism of malonic acid and its α-substituted derivatives in plants, Plant Physiol. 36: 121 (1961).CrossRefGoogle Scholar
  39. 39.
    E. J. Mitzen, A. A. Ammouni and N. H. Koeppen, Developmental changes in malonate-related enzymes of rat brain, Arch. Biochem. Biophys. 175: 436 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    K. C. Oo and P. K. Stumpf, Fatty acid biosynthesis in the developing endosperm of Cocos nucifera, Lipids 14: 132 (1979).CrossRefGoogle Scholar
  41. 41.
    A. R. Slabas, J. Harding, A. Hellyer, C. Sidebottom, H. Gwynne, R. Kessell and M. P. Tombs, Enzymology of plant fatty acid biosynthesis, in: “Structure, Function and Metabolism of Plant Lipids”, P. A. Siegenthaler and W. Eichenberger, eds., Elsevier Science Publishers, Amsterdam (1984).Google Scholar
  42. 42.
    F. Hirsinger, Agronomic potential and seed composition of Cuphea, an annual crop for lauric and capric seed oils, J. Am. Oil Chem. Soc. 62: 76 (1985).CrossRefGoogle Scholar
  43. 43.
    K. P. Huang and P. K. Stumpf, Fat metabolism in higher plants. XLIV. Fatty acid synthesis by a soluble fatty acid synthetase from Solanum tuberosum, Arch. Biochem. Biophys. 143: 412 (1971).PubMedCrossRefGoogle Scholar
  44. 44.
    N. M. Packter and P. K. Stumpf, Fat metabolism in higher plants. The effect of cerulenin on the synthesis of medium-and long-chain acids in leaf tissue, Arch. Biochem. Biophys. 167: 655 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michael R. Pollard
    • 1
  • Sheo S. Singh
    • 1
  1. 1.ARCO Plant Cell Research InstituteDublinUSA

Personalised recommendations