Advertisement

Desaturation of Fatty Acids on Complex-lipid Substrates

  • Sten Stymne
  • Gareth Griffiths
  • Keith Stobart

Abstract

Almost 20 years ago Gurr et al. (1), working with Chlorella, suggested that complex lipids in plants may serve as substrates for desaturase enzymes, particularly those that catalysed the synthesis of C18-polyunsaturated fatty acids. This proposai was contrary to our understanding of the desaturase enzymes in animals where acyl-CoA substrates were directly involved. Hence it was considered that perhaps in plants the polyunsaturated fatty acid products were beinq rapidly transferred from CoA to oxygen esters. More recently, with the advent of reliable techniques, our knowledge of the substrates involved in plants has increased considerably and the evidence, for instance, that the oleate in microsomal phosphatidylcholine (PC) is the substrate for Δ12-desaturase is well documented (2–4). There are also reliable data to show that α-linolenic acid (α-18: 3) is synthesised in leaves from linoleate (18: 2) associated with the chloroplast lipid, MGDG (5–7). On the other hand, although the evidence is of a less satisfactory nature, the α-18: 3, that is synthesised in certain oil-seeds occurs in microsomal PC (8, 9). Plants therefore differ from animals in that the synthesis of polyunsaturated fatty acids is characterised by complex lipid substrates. This raises further important problems, particularly those concerned with the mode(s) of entry of the fatty acid substrate into the complex lipid and the mechanism(s) by which the polyunsaturated products are then made available for the assembly of other lipids.

Keywords

Polyunsaturated Fatty Acid Complex Lipid Fatty Acid Substrate Desaturase Enzyme Swedish Natural Science Research Council 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Gurr, M. P. Robinson, and A. T. James, Eur. J. Biochem. 9: 70 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    C. R. Slack, P. G. Roughan, and J. A. Browse, Biochem. J. 179: 649 (1979).PubMedGoogle Scholar
  3. 3.
    S. Stymne, A. K. Stobart, and G. Glad, Biochim. Biophys. Acta 752: 198 (1983).PubMedGoogle Scholar
  4. 4.
    D. J. Murphy, I.E. Woodrow, and K. D. Mukherjee, Biochem. J. 225: 267 (1985)PubMedGoogle Scholar
  5. 5.
    P. G. Roughan, J. B. Mudd, T. T. McManus, and C.R. Slack, Biochem. J. 184: 571 (1979).PubMedGoogle Scholar
  6. 6.
    J. C. Hawke, and P. K. Stumpf, Arch. Biochem. Biophys. 203: 296 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    A. V. M. Jones, and J. L. Harwood, Biochem. J. 190: 851 (1980).PubMedGoogle Scholar
  8. 8.
    J. A. Browse, and C. R. Slack, FEBS-Lett. 131: 111 (1981).CrossRefGoogle Scholar
  9. 9.
    S. Stymne, and L-Å. Appelqvist, Plant Sci. Lett. 17: 287 (1980).CrossRefGoogle Scholar
  10. 10.
    S. Stymne and A. K. Stobart, Triacylglycerol biosynthesis, in: “The Biochemistry of Plants: a Comprehensive Treatise, Vol. 10,” P. K. Stumpf, ed., Acad. Press, N. Y. (1986).Google Scholar
  11. 11.
    R. F. Irvine, and M. Dawson, Biochem. Biophys. Res. Commun. 91: 1399 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Trotter, and E. Ferber, FEBS-Lett. 128: 237 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Flesch, B. Ecker, and E. Ferber, Eur. J. Biochem. 139: 431 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    R. M. Kramer, M. Pritzka, and G. Bereziat, J. Biol. Chem. 259: 2403 (1984).PubMedGoogle Scholar
  15. 15.
    S. Stymne, and A. K. Stobart, Biochim. Biophys. Acta 837: 239 (1985).PubMedGoogle Scholar
  16. 16.
    J. G. Nijssen, and H. van den Bosch, Biochim. Biophys. Acta 875: 458 (1986).PubMedGoogle Scholar
  17. 17.
    C. R. Slack, L. C. Campbell, J. A. Browse, and P. G. Roughan, Biochim. Biophys. Acta 754: 10 (1983).Google Scholar
  18. 18.
    C. R. Slack, P. G. Roughan, J. A. Browse, and S. E. Gardiner, Biochim. Biophys. Acta 833: 438 (1985).Google Scholar
  19. 19.
    A. K. Stobart, and S. Stymne, Biochem. J. 232: 217 (1985).PubMedGoogle Scholar
  20. 20.
    A. K. Stobart, and S. Stymne, Planta 163: 119 (1985).CrossRefGoogle Scholar
  21. 21.
    G. Griffiths, Ph.D. Thesis, Univ. of Bristol, U.K. (1986).Google Scholar
  22. 22.
    D. Howling, L. J. Morris, M. I. Gurr, and A. T. James, Biochim. Biophys. Acta 260: 10 (1972).PubMedGoogle Scholar
  23. 23.
    C. R. Slack, P. G. Roughan, and N. Balasingham, Biochem. J. 162: 289 (1977).PubMedGoogle Scholar
  24. 24.
    G. Griffiths, S. Stymne, A. Beckett, and A. K. Stobart, in “Regulation of Chloroplast Differentiation,” A. Akoyunoglou, ed., Liss, Inc., N. Y. (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Sten Stymne
    • 1
  • Gareth Griffiths
    • 1
  • Keith Stobart
    • 2
  1. 1.Department of Food HygieneSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Botany Dept.Univ. of BristolUK

Personalised recommendations