Enzymic Oxygenative-cleavage Reaction of Linolenic Acid in Leaves — Chloroplastic Lipoxygenase and Fatty Acid Hydroperoxide Lyase in Tea Leaves

  • Akikazu Hatanaka
  • Tadahiko Kajiwara
  • Jiro Sekiya

Abstract

Since (2E)-hexenal (leaf aldehyde) and (3Z)-hexenol (leaf alcohol) were first found in some bushes and tea leaves(13), many early works have been reported that these C6-volatile compounds are originating from plant tissues and largely responsible for the characteristic odor of various fruits and green leaves of vegetables and trees. Liholeic acid and linolenic acid having (1Z, 4Z)-pentadiene moiety were reported to be precursors of hexanal and hexenals, respectively, in 1966.(4) The reactions involved in the major biosynthetic pathway for C6-aldehydes consist of four sequential steps; acyl hydrolysis of lipids, hydroperoxidation of linoleic acid and linolenic acid, cleavage of the fatty acid hydroperoxides and isomerization of (3Z)-hexenal to (2E)-hexenal (Fig. 1).(59)) The three enzymes and one non-enzymic factor involved in the pathway are lipolytic acyl hydrolase(LAH), lipoxygenase, fatty acid hydroperoxide lyase (hydroperoxide lyase) and an isomerization factor (Fig. 1). Volatile C9-aldehydes are formed by a similar pathway.(7, 10, 11) Among these enzymes lipoxygenase and hydroperoxide lyase are the most important. The substrate specificities and the product specificities of these enzymes determine the composition of volatile aldehydes formed from linoleic acid and linolenic acid. The present report describes occurrence of, and substrate and product specificities of, lipoxygenase and hydroperoxide lyase in leaves, particularly in tea leaves.

Keywords

Hexanal Aldehyde Pentanal Chloro Heptenal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Curtius and H. Frunzen, Justus Liebigs Ann. Chem., 390, 89 (1912).CrossRefGoogle Scholar
  2. 2.
    P. von Romburgh, Chem. Zentralbl., 1920, I: 83.Google Scholar
  3. 3.
    S. Takei, Y. Sakato, M. Ohno and Y. Kuroiwa, Bull. Agric. Chem. Soc. Japan, 14, 709–715 (1938).Google Scholar
  4. 4.
    F. Drawert, W. Heimann, R. Emberger and R. Tressl, Justus Liebigs Ann. Chem., 694, 200–208 (1966).CrossRefGoogle Scholar
  5. 5.
    B. A. Vick and D. C. Zimmerman, Plant Physiol., 57, 780–788 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Galliard and J. A. Matthew., Phytochemistry, 16, 339–343 (1977).CrossRefGoogle Scholar
  7. 7.
    T. Galliard, in “Biochemistry of Wounded Plant Tissues”; G. Kahl, ed., Walterde, Gruyter, Berlin, West Germany, 1978, 155.Google Scholar
  8. 8.
    J. Sekiya, T. Kajiwara and A. Hatanaka, Plant Cell Physiol., 25, 269–280 (1984).Google Scholar
  9. 9.
    A. Hatanaka, T. Kajiwara and J. Sekiya, Phytochemistry, 15, 1125–1126 (1976).CrossRefGoogle Scholar
  10. 10.
    A. Hatanaka, T. Kajiwara and T. Harada, Phytochemistry, 14, 2589–2592 (1975).CrossRefGoogle Scholar
  11. 11.
    T. Galliard, D. R. Phillips and J. Reynolds, Biochim. Biophys. Acta, 441, 181–192 (1976).PubMedGoogle Scholar
  12. 12.
    J. Sekiya, S. Numa, T. Kajiwara and A. Hatanaka, Agric. Biol. Chem., 40, 185–190 (1976).CrossRefGoogle Scholar
  13. 13.
    A. Hatanaka, T. Kajiwara, J. Sekiya, M. Imoto and S. Inouye, Plant Cell Physiol., 23, 91–99 (1982).Google Scholar
  14. 14.
    T. Kajiwara, T. Koda and A. Hatanaka, Agric. Biol. Chem., 43, 1781–1782 (1979).CrossRefGoogle Scholar
  15. 15.
    A. Hatanaka, T. Kajiwara, J. Sekiya and S. Inouye, Phytochemistry, 21, 13–17 (1982).CrossRefGoogle Scholar
  16. 16.
    A. Hatanaka, T. Kajiwara, J. Sekiya and M. Asano, Z. Naturforsch., 39c, 171–173 (1984).Google Scholar
  17. 17.
    M. Holden, Phytochemistry, 9, 507–512 (1970).CrossRefGoogle Scholar
  18. 18.
    A. Pinsky, S. Grossman and M. Trop, J. Food Sci., 36, 571–572 (1971).CrossRefGoogle Scholar
  19. 19.
    A. Ben-Aziz, S. Grossman, P. Budowski and I. Ascarelli, Phytochemistry, 10, 1823–1830 (1971).CrossRefGoogle Scholar
  20. 20.
    S. Grossman, A. Ben-Aziz, I. Ascarelli and P. Budowski, Phytochemistry, 11, 509–514 (1972).CrossRefGoogle Scholar
  21. 21.
    J. Sekiya, T. Monma, T. Kajiwara and A. Hatanaka, Agric. Biol. Chem., 50, 521–522 (1986).CrossRefGoogle Scholar
  22. 22.
    T. Galliard and D. R. Phillips, Biochim. Biophys. Acta, 431, 278–287 (1976).PubMedGoogle Scholar
  23. 23.
    J. Sekiya, T. Kajiwara and A. Hatanaka, Agric. Biol. Chem., 43, 969–980 (1979).CrossRefGoogle Scholar
  24. 24.
    T. Matoba, H. Hidaka, H. Narita, K. Kitamura, N. Kaizuma and M. Kito, J. Agric. Food Chem., 33, 852–855 (1985).CrossRefGoogle Scholar
  25. 25.
    T. Matoba, H. Hidaka, K. Kitamura, N. Kaizuma and M. Kito, J. Agric. Food Chem., 33, 856–858 (1985).CrossRefGoogle Scholar
  26. 26.
    D. R. Phillips and T. Galliard, Phytochemistry, 17, 355–358 (1978).CrossRefGoogle Scholar
  27. 27.
    P. Schreier and G. Z. Lorenz, Z. Naturforsch., 37c, 165–173 (1982).Google Scholar
  28. 28.
    I.-S. Kim and W. Grosch, J. Agric. Food Chem., 29, 1220–1225 (1981).CrossRefGoogle Scholar
  29. 29.
    J. Sekiya, S. Tanigawa, T. Kajiwara and A. Hatanaka, Phytochemistry, 23, 2439–2443 (1984).CrossRefGoogle Scholar
  30. 30.
    J. A. Matthew and T. Galliard, Phytochemistry, 17, 1043–1044 (1978).CrossRefGoogle Scholar
  31. 31.
    D. A. Wardale, E. A. Lambert and T. Galliard, Phytochemistry, 17, 205–212 (1978).CrossRefGoogle Scholar
  32. 32.
    T. Kajiwara, J. Sekiya, M. Asano and A. Hatanaka, Agric. Biol. Chem., 46, 3087–3088 (1982).CrossRefGoogle Scholar
  33. 33.
    A. Hatanaka, T. Kajiwara and T. Koda, Agric. Biol. Chem., 43, 2115–2117 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Akikazu Hatanaka
    • 1
  • Tadahiko Kajiwara
    • 1
  • Jiro Sekiya
    • 1
  1. 1.Department of Agricultural Chemistry, Faculty of AgricultureYamaguchi UniversityYamaguchi 753Japan

Personalised recommendations