Advertisement

Molecular Species of Phosphatidylcholine in Plants: Biosynthesis and Role in Oleate Desaturation or Freezing Resistance

  • C. Demandre
  • A. M. Justin
  • X. V. Nguyen
  • M. Gawer
  • A. Trémolières
  • P. Mazliak

Abstract

High performance liquid chromatography has recently offered the possibility to separate all the molecular species (differing by their component fatty acids) forming a peculiar lipid class in a plant tissue. Thus a real molecular biology of lipids is now on progress in several laboratories1,3. The purpose of this paper is to present some recent data obtained in our laboratory, concerning the biosynthesis of various phosphatidylcholine molecular species on one side and the role played by these molecules in oleate desaturation or freezing-resistance, on the other side.

Keywords

Potato Tuber Molecular Species Frost Resistance Oleate Desaturation Freezing Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. V. Lynch, R. E. Gundersen, and G. A. Thompson, Separation of galactolipid molecular species by high-performance liquid chromatography, Plant Physiol., 72: 903 (1983)PubMedCrossRefGoogle Scholar
  2. (2).
    J. Kesselmeier, and E. Heinz, Separation and quantitation of molecular species from plant lipids by high-performance liquid chromatography, Analytical Biochemistry, 144: 319 (1985)PubMedCrossRefGoogle Scholar
  3. (3).
    C. Demandre, A. Tremolieres, A. M. Justin, and P. Mazliak, Analysis of molecular species of plant polar lipids by high-performance and gas liquid chroraatography, Phytochemistry, 24: 481 (1985)CrossRefGoogle Scholar
  4. (4).
    A. M. Justin, C. Demandre, A. Tremolieres, and P. Mazliak, No discrimination by phosphocholine and phosphoethanolamine transferases from potato tuber microsomes in molecular species of endogenous diacylglycerols, Biochim. Biophys. Acta, 836: 1 (1985)Google Scholar
  5. (5).
    J. K. Vijay, and P. K. Stumpf, Nature of the substrate and the product of oleoylCoA desaturase from Carthamus tinctorius, J. Biol. chem., 246: 2910 (1971)PubMedGoogle Scholar
  6. (6).
    A. B. Abdelkader, A. Cherif, C. Demandre, and P. Mazliak, The oleoyl-CoA desaturase of potato tubers, Europ. J. Biochem., 32: 155 (1973)PubMedCrossRefGoogle Scholar
  7. (7).
    A. Tremolieres, D. Drapier, J. P. Dubacq, and P. Mazliak, Oleoyl-CoA metabolization by subcellular fractions from growing pea leaves, Plant Sci. Letters, 18: 257 (1980)CrossRefGoogle Scholar
  8. (8).
    D. J. Murphy, K. D. Mukherjee, and I. E. Woodrow, Functional association of a monoacylglycerophosphocholine acyltransferase and the oleoylglycerophosphocholine desaturase in microsomes from developing leaves, Europ. J. Biochem., 139: 373 (1984)PubMedCrossRefGoogle Scholar
  9. (9).
    P. G. Roughan, and C. R. Slack, Cellular organization of glycerollpid metabolism, Ann. Rev. Plant Physiol., 33: 97 (1982)CrossRefGoogle Scholar
  10. (10).
    A. K. Stobart, and S. Stymne, Regulation of the fatty acid composition of the triacylglycerols in microsomal preparations from avocado mesocarp and the developing cotyledons of safflower, Planta, 163: 119 (1985)CrossRefGoogle Scholar
  11. (11).
    C. P. Rochester, and D. G. Bishop, The role of lysophosphatidylcholine In llpid synthesis by developing sunflower (Helianthus annuus L.) seed microsomes, Arch. Biochem. Biophys., 232: 249 (1985)CrossRefGoogle Scholar
  12. (12).
    C. Demandre, A. Tremolieres, A. M. Justin and P. Mazliak, Oleate desaturatlon In six phosphatidylcholine molecular species from potato tuber microsomes, Biochlm. Biophys. Acta, (in the press) (1986)Google Scholar
  13. (13).
    D. J. Murphy, I. E. Woodrow, and K. D. Murkherjee, Substrate specificities of the enzymes of the oleate desaturase system from photosynthetic tissue, Biochem. J., 225: 267 (1985)PubMedGoogle Scholar
  14. (14).
    X. V. Nguyen, and D. Côme, Opposite effects of temperature on breaking of dormancy and induction of frost resistance in apple embryos, Physiol. Plant., 62: 79 (1984)CrossRefGoogle Scholar
  15. (15).
    X. V. Nguyen, D. Côme, S. Lewak, and P. Mazliak, Dormancy breaking and frost resistance induction in apple embryos as related to changes in reserve and polar lipids, Physiol. Plant., 62: 566 (1984)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. Demandre
    • 1
  • A. M. Justin
    • 1
  • X. V. Nguyen
    • 1
  • M. Gawer
    • 1
  • A. Trémolières
    • 1
  • P. Mazliak
    • 1
  1. 1.Laboratoire de Physiologie Cellulaire (UA 1180)Paris CedexFrance

Personalised recommendations