Advertisement

Diterpenes - The Gibberellin Biosynthetic Pathway in ZeaMays

  • Bernard O. Phinney
  • Clive R. Spray

Abstract

Gibberellins (GAs) are a class of tetracyclic diterpenes that are probably of universal occurrence in the plant kingdom. They are also present (although with unknown function) in the fungi, Gibberella fujikuroi and Sphaceloma manihoticola. As phytohormones, these gibberellins stimulate a wide variety of responses, including the mobilization of storage starch during germination, flowering (indirect), fruit set, fruit size and shoot elongation. There are numerous reviews that describe the effects of GAs on the growth and differentiation of higher plants (for example,1–3). There is also considerable literature on the biosynthesis of the gibberellins (for reviews and symposia reports see4–10). In contrast, information on the enzymology of gibberellin metabolism has proceeded at a slower pace, due in part to difficulties arising from the low levels of the cyclases and oxidases that control steps in the biosynthetic pathway, especially those subsequent to GA12-aldehyde.

Keywords

Biosynthetic Pathway Dwarf Mutant Plant Growth Substance Gibberellin Biosynthesis Endogenous Gibberellin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Letham, P. B. Goodwin and T. J. V. Higgins, eds. “Phytohormones and Related Compounds — A Comprehensive Treatise. Vol. II.,” Elsevier/North Holland, Amsterdam (1978).Google Scholar
  2. 2.
    G. C. Martin, Commercial uses of gibberellins, in: “The Biochemistry and Physiology of Gibberellins, Vol II,” A. Crozier, ed., Praeger, New York (1983).Google Scholar
  3. 3.
    R. P. Pharis and R. W. King, Gibberellins and reproductive development in seed plants, Ann. Rev. Plant Physiol. 36: 517 (1985).CrossRefGoogle Scholar
  4. 4.
    J. R. Bearder, Plant hormones and other growth substances — their background, structures and occurrence, in: “Encycopedia of Plant Physiology, New Series, Vol. 9, Hormonal Regulation of Development I Molecular Aspects,” J. MacMillan, ed., Springer-Verlag, Berlin (1980).Google Scholar
  5. 5.
    R. C. Coolbaugh, Early stages of gibberellin biosynthesis, in: “The Biochemistry and Physiology of Gibberellins, Vol I,” A. Crozier, ed., Praeger, New York (1983).Google Scholar
  6. 6.
    J. E. Graebe, Gibberellin biosynthesis from gibberellin A12-aldehyde, in: “Plant Growth Substances 1985,” M. Bopp, ed., Springer-Verlag, Berlin, Heidelberg (1986).Google Scholar
  7. 7.
    J. E. Graebe and H. J. Ropers, Gibberellins, in: “Phytohormones and Related Compounds — A Comprehensive Treatise. Vol. I,” D. S. Letham, P. B. Goodwin and T. J. V. Higgins, eds., Elsevier/North Holland, Amsterdam (1978).Google Scholar
  8. 8.
    P. Hedden, J. MacMillan and B. O. Phinney, The metabolism of the gibberellins, Ann. Rev. Plant Physiol. 29: 149 (1978).CrossRefGoogle Scholar
  9. 9.
    C. A. West, Biosynthesis of diterpenes, in: “Biosynthesis of Isoprenoid Compounds. Vol. I,” J. W. Porter and S. L. Spurgeon, eds., John Wiley and Sons, New York (1981).Google Scholar
  10. 10.
    C. A. West, Hydroxylases, monooxygenases and cytochrome P-450, in: “The Biochemistry of Plants — A Comprehensive Treatise. Vol. II,” P. K. Stumpf and E. E. Conn, eds., Academic Press, New York (1980).Google Scholar
  11. 11.
    B. O. Phinney and C. R. Spray, Gibberellins (GAs), gibberellin mutants and their future in molecular biology, in: “Current Topics in Plant Biochemistry and Physiology. Vol. 4,” D. D. Randall, D. G. Blevins and R. L. Larson, eds., University of Missouri, Columbia (1985).Google Scholar
  12. 12.
    B. O. Phinney, Gibberellin A1, dwarfism and the control of shoot elongation in higher plants, in: “ The Biosynthesis and Metabolism of Plant Hormones”, A. Crozier and J. R. Hillman, eds., Society for Experimental Biology Seminar 23, Cambridge University Press, Cambridge (1984).Google Scholar
  13. 13.
    R. C. Heupel, B. O. Phinney, C. R. Spray, P. Gaskin, J. MacMillan, P. Hedden and J. E. Graebe, Native gibberellins and the metabolism of [14C]gibberellin A53 and of [17-13C, 17-3H]gibberellin A20 in tassels of Zea mays, Phytochemistry 24: 47 (1985).CrossRefGoogle Scholar
  14. 14.
    C. R. Spray, H. Yamane, S. Fujioka, B. O. Phinney, P. Gaskin and J. MacMillan, Unpublished data.Google Scholar
  15. 15.
    Y. Kamiya and J. E. Graebe, The biosynthesis of all major pea gibberellins in a cell-free system from Pisum sativum, Phytochemistry 22: 681 (1983).CrossRefGoogle Scholar
  16. 16.
    V. M. Sponsel, The localization, metabolism and biological activity of gibberellins in maturing and germinating seeds of Pisum sativum cv. Progress No. 9, Planta 159: 454 (1983).CrossRefGoogle Scholar
  17. 17.
    P. Hedden and B. O. Phinney, Comparison of ent-kaurene and ent-isokaurene synthesis in cell-free systems from etiolated shoots of normal and dwarf-5 maize seedlings, Phytochemistry 18: 1475 (1979).CrossRefGoogle Scholar
  18. 18.
    E. S. Wurtele, P. Hedden and B. O. Phinney, Metabolism of the gibberellin precursors ent-kaurene, ent-kaurenol, and ent-kaurenal in a cell-free system from seedling shoots of normal maize, J. Plant Growth Regul. 1: 15 (1982).CrossRefGoogle Scholar
  19. 19.
    C. Spray, B. O. Phinney, P. Gaskin, S. J. Gilmour and J. MacMillan, Internode length in Zea mays L. the dwarf-1 mutation controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1, Planta 160: 464 (1984).CrossRefGoogle Scholar
  20. 20.
    L. J. Davies and L. Rappaport, Metabolism of tritiated gibberellins in d-5 dwarf maize I, Plant Physiol. 55: 620 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    L. J. Davies and L. Rappaport, Metabolism of tritiated gibberellins in d-5 dwarf maize II, Plant Physiol. 56: 60 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    B. O. Phinney and C. Spray, Gibberellin biosynthesis in Zea mays: the 3-hydroxylation step GA20 to GA1, in: “ IUPAC Pesticide Chemistry, Human Welfare and the Environment”, J. Miyamoto, ed., Pergamon, Oxford (1983).Google Scholar
  23. 23.
    B. O. Phinney, M. Freeling, D. S. Robertson, C. R. Spray and J. Silverthorne, Dwarf mutants in maize — the gibberellin biosynthetic pathway and its molecular future, in: “Plant Growth Substances 1985,” M. Bopp, ed., Springer-Verlag, Berlin, Heidelburg (1986).Google Scholar
  24. 24.
    B. O. Phinney and C. Spray, Chemical genetics and the gibberellin pathway in Zea mays L., in: “Plant Growth Substances 1982”, P. F. Wareing, ed., Academic Press, London (1982).Google Scholar
  25. 25.
    J. MacMillan, Personal communication.Google Scholar
  26. 26.
    C. A. West, Personal communication.Google Scholar
  27. 27.
    R. F. Barker, D. V. Thompson, D. R. Talbot, J. Swanson and J. L. Bennetzen, Nucleotide sequence of the maize transposable element Mul, Nucl. Acids Res. 12: 5955 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Bernard O. Phinney
    • 1
  • Clive R. Spray
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations