Ultrastructural Studies on Plant Membranes

  • W. W. Thomson
  • K. A. Platt-Aloia
  • R. D. Bliss


The most accepted hypothesis for the general organization of membranes is the fluid-mosaic model of Singer and Nicolson.1 In this model, membranes are viewed as a lipid bilayer with “integral” membrane proteins embedded in, as well as extending across, the lipid bilayer matrix. The model predicts that membranes can be asymmetrically organized with different lipids and proteins and amounts of each occurring in either half of the membrane. Also, Singer and Nicolson suggested that the lipid matrix was fluid with the lipid constituents as well as the proteins “floating” in this matrix, “freely” moving in the plane of the membrane. Thus, no long-range order or significant degrees of lateral heterogeneity as to the location of specific constituents would be expected in membranes unless constrained in place by extramembrane elements. In this paper, we examine the organization and lateral heterogeneity of plant membranes using electron microscopic methods.


Salt Gland Lateral Heterogeneity Freeze Fracture Plant Membrane Cowpea Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175: 720 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Branton and R. B. Park, “Papers on Biological Membrane Structure,” Little, Brown and Co., Boston (1968).Google Scholar
  3. 3.
    T. E. Weier and A. A. Benson, The molecular nature of chloroplast membranes, in: “Biochemistry of Chloroplasts,” vol. I, T. W. Goodwin, ed., Academic Press, London and New York (1966).Google Scholar
  4. 4.
    A. A. Benson, The cell membrane: a lipoprotein monolayer, in: “Membrane Models and the Formation of Biological Membranes,” L. Bolis and B. A. Pethica, eds., North Holland Publishing Co., Amsterdam (1968).Google Scholar
  5. 5.
    P. Pinto da Silva and D. Branton, Membrane splitting in freezeetching, J. Cell Biol. 45: 598 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    D. W. Deamer, R. Leonard, A. Tardieu, and D. Branton, Lamellar and hexagonal lipid phases visualized by freeze-etching, Biochim. Biophys. Acta 219: 47 (1960).Google Scholar
  7. 7.
    E. W. Simon, Phospholipids and plant membrane permeability, New Phytol. 73: 377 (1974).CrossRefGoogle Scholar
  8. 8.
    V. Luzzati and F. Husson, The structure of liquid-crystalline phases of lipid-water systems, J. Cell Biol. 12: 207 (1962).PubMedCrossRefGoogle Scholar
  9. 9.
    W. W. Thomson and K. A. Platt-Aloia, Ultrastructure and membrane permeability in cowpea seeds, Pl., Cell, Environ. 5: 367 (1982).CrossRefGoogle Scholar
  10. 10.
    R. D. Bliss, K. A. Platt-Aloia, and W. W. Thomson, Changes in plasmalemma organization in cowpea radicle during imbibition in water and NaCl solutions, Pl., Cell, Environ. 7: 601 (1984).Google Scholar
  11. 11.
    E. L. Vigil, R. L. Steere, W. P. Wergin, and M. N. Christiansen, Structure of plasma membrane in radicles from cotton seed, Protoplasma, 129: 168 (1985).CrossRefGoogle Scholar
  12. 12.
    K. A. Platt-Aloia, E. M. Lord, D. A. DeMason, and W. W. Thomson, Freeze fracture observations on membranes of dry and hydrated pollen from Collomia, Phoenix and Zea, Planta (in press).Google Scholar
  13. 13.
    R. D. Bliss, K. A. Platt-Aloia, and W. W. Thomson, Osmotic sensitivity in germinating barley seeds, Pl., Cell, Environ., (in press).Google Scholar
  14. 14.
    D. Branton, S. Bullivant, N. B. Gilula, M. J. Karnovsky, H. Moor, K. Muhlethaler, D. H. Northcote, L. Packer, B. Satir, P. Satir, V. Speth, L. A. Staehelin, R. L. Steere, R. S. Weinstein, Freezeetching nomenclature, Science 190: 54 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    E. V. Mass and R. H. Nieman, Physiology of plant tolerance to salinity, in: “Crop Tolerance to Suboptimal Land Conditions,” G. A. Jung, ed., Amer. Soc. Agron. Specialist, Pub. 32.Google Scholar
  16. 16.
    L. A. Staehelin and C. J. Arntzen, Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components, J. Cell Biol. 97: 1327 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    C.D. Faraday and W. W. Thomson, Morphometric analysis of Limonium salt glands in relation to ion efflux, J. Exp. Bot, 37: 471 (1986).CrossRefGoogle Scholar
  18. 18.
    J. M. Lyons, Chilling injury in plants, Ann. Rev. Plant Physiol. 24: 445 (1973).CrossRefGoogle Scholar
  19. 19.
    K. A. Platt-Aloia and W. W. Thomson, Freeze fracture evidence for lateral phase separations in membranes of chilling-injured avocado fruit, Protoplasma (in press).Google Scholar
  20. 20.
    R. D. Butler and E. W. Simon, Ultrastructural aspects of senescence in plants, Adv. Gerontol. Res. 3: 73 (1971).Google Scholar
  21. 21.
    K. A. Platt-Aloia and W. W. Thomson, Freeze-fracture evidence of gelphase lipid in membranes of senescing cowpea cotyledons, Planta 163: 360 (1985).CrossRefGoogle Scholar
  22. 22.
    R. F. Barber and J. E. Thompson, Senescence-dependent increase in the permeability of liposomes prepared from bean cotyledon membranes. J. Exp. Bot. 3: 1305 (1980).CrossRefGoogle Scholar
  23. 23.
    R. G. Miller, The use and abuse of filipin to localize cholesterol in membranes, Cell, Biol. Int. Reps. 8: 519 (1984).CrossRefGoogle Scholar
  24. 24.
    J. N. Israelachvili, S. Marcelja, and R. G. Horn, Physical principles of membrane organization, Quart. Rev. Biophys. 13: 121 (1980).CrossRefGoogle Scholar
  25. 25.
    E. M. Herman, K. A. Platt-Aloia, W. W. Thomson, and L. M. Shannon, Freeze fracture and filipin cytochemical observations of developing soybean cotyledon, Eur. J. Cell Biol. 35: 1 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • W. W. Thomson
    • 1
  • K. A. Platt-Aloia
    • 1
  • R. D. Bliss
    • 1
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations