Phytosterol Structure and Composition in the Chemosystematics of the Caryophyllales

  • John H. Adler
  • Thomas A. Salt


Angiosperms synthesize a diverse array of 4-desmethylsterols which vary primarily in position and number of double bonds as well as stereochemistry at C-241, 2. The high degree of structural chemistry1, 2 associated with sterols, their essentiality for proper eucaryotic cell function3, 4, 5, and their ubiquitous distribution in the plant kingdom1,2 make phytosterols potentially useful molecules for the characterization of taxonomically related organisms. Most angiosperms produce 24α-alkyl-Δ5-sterols with relatively few species producing 24-alkyl-Δ7-sterols as dominant sterols1,2.


Sterol Composition Triterpene Alcohol Ubiquitous Distribution Lipid Polymer Predominant Sterol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Nes and W. D. Nes, “Lipids in Evolution”, Plenum Press, New York (1980).Google Scholar
  2. 2.
    L. J. Goad, “The Biosynthesis of Plant Sterols”, in “Lipids and Lipid Polymers in Higher Plants”, Tevini, M., and Lichtenthaler, H.K. eds. pp. 146–168, Springer-Verlag, Berlin (1977).CrossRefGoogle Scholar
  3. 3.
    R. J. Rodriguez, C. Low, C. D. K. Bottema, and L. W. Parks, “Multiple Functions for Sterols in Saccharomyces cerevisiae”, Biochim. Biophys. Acta 837: 336 (1985).PubMedGoogle Scholar
  4. 4.
    W. R. Nes, B. C. Sekula, W. D. Nes and J. H. Adler, “The Functional Importance of Structural Features of Ergosterol in Yeast”, J. Biol. Chem. 253: 6218 (1978).PubMedGoogle Scholar
  5. 5.
    C. H. Moeller and J. B. Mudd “Localization of Filipin — Sterol Complexes in the Membranes of Beta vulgaris Roots and Spinacia oleracea Chloroplasts”, Plant Physiol. 70: 1554 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Cronquist, “An Integrated System of Classification of Flowering Plants”, Columbia University Press, New York (1981).Google Scholar
  7. 7.
    T. Itoh, T. Tamura, and T. Matsumoto, “Sterols, Methylsterols and Triterpene Alcohols in Three Theaceae and Some Other Vegetable Oils” Lipids 9: 173 (1974).CrossRefGoogle Scholar
  8. 8.
    C. Djerassi, G. W. Krakower, A. J. Lemin, L. H. Liu, J. S. Mills and R. Villotti, “The Neutral Constituents of the Cactus Lophocereus schottii,” J. Amer. Chem. Soc. 80: 6284 (1958).CrossRefGoogle Scholar
  9. 9.
    W. S. Woo and S. S. Kang, “Phytosterolins From Phytolacca esculenta” J. Pharmaceutical Soc. Korea 17: 161 (1973).Google Scholar
  10. 10.
    T. A. Salt and J. H. Adler, “Diversity of Sterol Composition in the Family Chenopodiaceae” Lipids 20: 594 (1985).CrossRefGoogle Scholar
  11. 11.
    T. A. Salt and J. H. Adler, “Dominance of Δ7-Sterols in the Family Caryophyllaceae”, Lipids, In Press.Google Scholar
  12. 12.
    T. A. Salt and J. H. Adler, “Dominance of Δ5-Sterols in Eight Species of the Cactaceae”, Phytochemistry, In Press.Google Scholar
  13. 13.
    S. Xu, G. W. Patterson and K. Schmid, “Sterols in Amaranthaceae”, Phytochemistry, In Press.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • John H. Adler
    • 1
  • Thomas A. Salt
    • 2
  1. 1.Dept. of Biological SciencesMichigan Tech. UniversityHoughtonUSA
  2. 2.Dept. of BotanyUniversity of MarylandCollege ParkUSA

Personalised recommendations