Lipids of Diatoms and of Halophilic Dunaliella Species

  • Morris Kates


The major polar lipids of green algae, as of higher plants, generally reflect those that are characteristic of chloroplast membranes: mono- and digalactosyldiacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidylglycerol. The long-chain fatty acid constituents, again as in higher plants, also reflect those characteristic of the chloroplast membrane and consist largely of C-18 polyunsaturated acids with lesser amounts of C-16 saturated and polyunsaturated acids.


Polar Lipid Cysteic Acid Total Polar Lipid Methylene Cholesterol Halophilic Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kates and B.E. Volcani, Lipids of diatoms, Biochim. Biophys. Acta 116: 264 (1966).PubMedGoogle Scholar
  2. 2.
    F.I. Opute, Lipid and fatty acid composition of diatoms. J. Exp. Bot. 25: 823 (1974).CrossRefGoogle Scholar
  3. 3.
    R. Anderson, B.P. Livermore, M. Kates and B.E. Volcani, The lipid composition of the non-photosynthetic diatom Nitzschia alba, Biochim. Biophys. Acta 528: 77 (1978).PubMedGoogle Scholar
  4. 4.
    R. Anderson, M. Kates and B.E. Volcani, Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba, Biochim. Biophys. Acta 528: 89 (1978).PubMedGoogle Scholar
  5. 5.
    M. Kates, P. Tremblay, R. Anderson and B.E. Volcani, Identification of the free and conjugated sterol in non-photosynthetic diatom, Nitzschia alba, as 24-methylene cholesterol, Lipids 13: 34 (1978).CrossRefGoogle Scholar
  6. 6.
    P.-A. Tremblay and M. Kates, Chemical synthesis of sn-3-phosphatidyl sulfocholine, a sulfonium analogue of lecithin, Can. J. Biochem. 57: 595 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    N.N. Karpyshev, A.S. Bushnev, E.N. Zoonkova and R.P. Evstigneeva, Synthesis of ceramide-1-deoxy-l-sulfonic acid, Bioorg. Chim. 3: 1373 (1977).Google Scholar
  8. 8.
    P. Bisseret, S. Ito, P.-A. Tremblay, B.E. Volcani, D. Dessort and M. Kates, Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine, in some diatoms and algae. Biochim. Biophys. Acta 796: 320 (1984).Google Scholar
  9. 9.
    P. Bisseret, D. Dessort, Y. Nakatani and M. Kates, Ammonia desorption chemical ionization mass spectrometry of phosphatidylsulfocholinephosphatidylcholine mixtures. Chem. Phys. Lipids 36: 309 (1985).Google Scholar
  10. 10.
    T.G. Tornabene, M. Kates and B.E. Volcani, Sterols aliphatic hydrocarbons and fatty acids of a non-photosynthetic diatom, Nitzschia alba, Lipids 9: 279 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    J.A. Erwin, Comparative biochemistry of fatty acids in eukaryotic microorganisms in “Lipids and Biomembranes of Eukaryotic Microorganisms”, J.A. Erwin, ed., Academic Press, New York (1973).Google Scholar
  12. 12.
    R.K. Bannerjee, and A.B. Roy, The formation of cholesteryl sulfate by adrenostolane sulfotransferase, Biochim. Biophys. Acta 137: 211 (1967).Google Scholar
  13. 13.
    W. Stoffel, Studies on the biosynthesis and degradation of sphingosine bases, Chem. Phys. Lipids 5: 139 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Anderson, M. Kates and B.E. Volcani, Studies on the biosynthesis of sulfolipids in the diatom Nitzschia alba, Biöchim. Biophys. Acta, 573: 557 (1979).PubMedGoogle Scholar
  15. 15.
    D.R. Abbanat, W. Godchaux, G. Polychroniou and E.R. Leadbetter, Biosynthesis of a sulfonolipid in gliding bacteria, Biochem. Biophys. Res. Commun. 130: 873 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    G.A. Maw, in “Sulfur in Organic and Inorganic Chemistry”, A. Senning ed., Marcel Dekker, New York (1972) pp. 113.Google Scholar
  17. 17.
    R.C. Greene, Biosynthesis of dimethyl-β-propiothetin, J. Biol. Chem. 237: 2251 (1962).PubMedGoogle Scholar
  18. 18.
    K.S. Bjerve and J. Bremer, Sulfocholine (dimethylhydroxyethylsulfonium chloride) and choline metabolism in the rat, Biochem. Biophys. Acta 176: 570 (1969).PubMedGoogle Scholar
  19. 19.
    R. Anderson and P. Bilan, Replacement of mouse LM fibroblast choline by a sulfonium analog, Biochim. Biophys. Acta 640: 91 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Kates and P.-A. Tremblay, L’analogue sulfonium de la lecithine, le phosphatidylsulfocholine, peut-il-remplacer efficacement la lecithine dans les membranes naturelles? Rev. Can. Biol. 40: 343 (1981).Google Scholar
  21. 21.
    R.W. Evans, M. Kates, M. Ginzburg and B.-Z. Ginzburg, Lipid composition of halotolerant algae, Durialiella parva Lerche and Dunaliella tertiolecta, Biochim. Biophys. Acta 712: 186 (1982).Google Scholar
  22. 22.
    R.W. Evans and M. Kates, Lipid composition of halophilic species of Dunaliella from the Sinai, Arch. Microbiol, 140: 50 (1984).CrossRefGoogle Scholar
  23. 23.
    R.W. Evans, M. Kates, G.W. Wood, Identification of diacylglycerol-O-(N, N, N-trimethyl)-homoserine in the halotolerant algae, Dunaliella parva, Chem. Phys. Lipids, 31: 331 (1982).CrossRefGoogle Scholar
  24. 24.
    A. Fried, A. Tietz, A. Ben-Amotz, W. Eichenberger, Lipid composition of the halotolerant alga, Durialiella bardawil, Biochim. Biophys. Acta 713: 419 (1982).Google Scholar
  25. 25.
    W. Eichenberger, A. Boschetti, Occurrence of 1 (3), 2-diacylglyceryl-(3)-0-4′-(N, N, N-trimethyl)-homoserine in Chlamydomonas reinhardi FEBS Lett. 88: 201 (1978).Google Scholar
  26. 26.
    D.R. Janero and R. Barnett, Isolation and characterization of an ether-linked homoserine lipid from the thylakoid membrane of Chlamydomonas reinhardtii 137+. J. Lipid Res. 23: 307 (1982).PubMedGoogle Scholar
  27. 27.
    K.R. Moseley, G.A. Thompson Jr., Lipid composition and metabolism of Volvox carteri. Plant Physiol. 65: 260 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    W. Eichenberger, Distribution of diacylglycerol-0-4′-(N, N, N-trimethyl) homoserine, Plant Sci. Lett. 24: 91 (1982).CrossRefGoogle Scholar
  29. 29.
    N. Sato and M. Furuya, Distribution of diacylglyceryl-trimethylhomoserine and phosphatidylcholine in non-vascular green plants, Plant Sci. 38: 81 (1985).CrossRefGoogle Scholar
  30. 30.
    A.E. Brown, J. Elovson, Isolation and characterization of a novel lipid, 1 (3), 2-Diacylglyceryl-(3)-0-4′-(N, N, N-trimethyl)homoserine from Ochromonas dariica. Biochemistry 13: 3476 (1974).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Yamada and Y. Nozawa, An unusual lipid in the human pathogenic fungus Epidermophyton floceosum, Biohim. Biophys. Acta 574: 433 (1979).Google Scholar
  32. 32.
    N. Sato and M. Furuya, Distribution of diacylglyceryl trimethylhomoserine in selected species of vascular plants, Phytochemistry, 23: 1625 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Morris Kates
    • 1
  1. 1.Department of BiochemistryUniversity of OttawaOttawaCanada

Personalised recommendations