In certain ways all sterols are the same, yet in other respects they are quite different. To some extent we understand the reason for the similarities in that sterols must “fit” into the phospholipid leaflet which comprises the monolayer component of the common bilayer arrangement of natural membranes1. On the other hand, the reason or reasons for the differences in structure are still elusive. Although we are making a beginning, we still do not yet know why it is that, for instance, people have cholesterol as their major sterol1, while in flowering poinsettia plants only about half the sterol is cholesterol2, in cottonseed oil 93% of the sterol is 24α-ethylcholesterol (sitosterol)1, and in the vine, Clerodendrum splendens, nearly all of the sterol is the 22, 25 (27)-bisdehydro derivative of the 24β-epimer of sitosterol, viz., 25 (27)-dehydroporiferasterol3.


Plant Sterol Free Sterol Sterol Structure Exogenous Sterol Membranous Subcellular Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Nes and M. L. McKean, “Biochemistry of Steroids and Other Isopentenoids,” University Park Press, Baltimore (1977).Google Scholar
  2. 2.
    B. C. Sekula and W. R. Nes, The identification of cholesterol and other steroids in E. pulcherrima, Phyto chemistry 19: 1509 (1980).Google Scholar
  3. 3.
    W. J. Pinto and W. R. Nes, 24β-Ethylsterols, n-alkanes and n-alkanols of C. splendens, Phytochemistry 24: 1095 (1985).CrossRefGoogle Scholar
  4. 4.
    W. R. Nes, Biochemistry of plant sterols, in: “Advances in Lipid Research, Volume 15,” Academic Press, New York (1977).Google Scholar
  5. 5.
    T. H. Varkony, D. H. Smith, and C. Djerassi, Computer-assisted manipulation. Studies in the biosynthesis of natural products, Tetrahedron 34: 841 (1978).CrossRefGoogle Scholar
  6. 6.
    W. R. Nes, K. Krevitz, and S. Behzadan, Configuration at C-24 of 24-methyl-and 24-ethylcholesterol in tracheophytes, Lipids 11: 118 (1976).CrossRefGoogle Scholar
  7. 7.
    W. R. Nes, K. Krevitz, J. Joseph, W. D. Nes, B. Harris, G. F. Gibbons, and G. W. Patterson, The phylogenetic distribution of sterols in tracheophytes, Lipids 12: 511 (1977).CrossRefGoogle Scholar
  8. 8.
    V. K. Garg and W. R. Nes, Studies on the C-24 configurations of Δ7 — sterols in the seeds of C. maxima, Phytochemistry 23: 2919 (1984).CrossRefGoogle Scholar
  9. 9.
    V. K. Garg and W. R. Nes, Codisterol and other Δ5-sterols in seeds of C. maxima, Phytochemistry 23: 2925 (1984).CrossRefGoogle Scholar
  10. 10.
    T. Akihisa, S. Thakur, F. U. Rosenstein, and T. Matsumoto, Sterols of cucurbitaceae: The configuration at C-24 of 24-alkyl-Δ5-, Δ7-and Δ8-sterols, Lipids 21: 39 (1986).CrossRefGoogle Scholar
  11. 11.
    C. Huang and J. T. Mason, Geometric packing constraints in egg phosphatidylcholine vesicles, Proc. Natl. Acad. Sci. USA 75: 308 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    J. M. Joseph, Influence of side chain structure on metabolism of sterols in Tetrahymena pyriformis, Ph.D. Dissertation, Drexel University (1980).Google Scholar
  13. 13.
    W. R. Nes, J. M. Joseph, J. R. Landrey, and R. L. Conner, The effects of branching, oxygen, and chain length in the side chain of sterols on their metabolism by T. pyriformis, J. Biol. Chem. 255: 11815 (1980).PubMedGoogle Scholar
  14. 14.
    W. R. Nes, B. C. Sekula, W. D. Nes, and J. H. Adler, The functional importance of structural features of ergosterol in yeast, J. Biol. Chem. 253: 6218 (1978).PubMedGoogle Scholar
  15. 15.
    W. J. Pinto and W. R. Nes, Stereochemical specificity for sterols in S. cerevisiae, J. Biol. Chem. 258: 4472 (1983).PubMedGoogle Scholar
  16. 16.
    W. J. Pinto, R. Lozano, B. C. Sekula, and W. R. Nes, Stereochemically distinct roles for sterol in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 112: 47 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Ramgopal and K. Bloch, Sterol synergism in yeast, Proc. Natl. Acad. Sci. USA 80: 712 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    W. R. Nes, J. M. Joseph, and J. H. Adler, A comparison of the absorption of sterols with their ability to promote growth in Saccharomyces cerevisiae, Fed. Proc. 40: 1561 (1981).Google Scholar
  19. 19.
    W. D. Nes, R. Y. Wong, M. Benson, J. R. Landrey, and W. R. Nes, Rotational isomerism about the 17 (20)-bond of steroids and euphoids as shown by the crystal structure of euphol and tirucallol, Proc. Natl. Acad. Sci. USA 81: 5896 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    V. K. Garg and W. R. Nes, Changes in Δ5-and Δ7-sterols during germination and seedling development of C. maxima, Lipids 20: 876 (1985).CrossRefGoogle Scholar
  21. 21.
    R. J. Rodriguez, F. R. Taylor, and L. W. Parks, A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol, Biochem. Biophys. Res. Commun. 106: 435 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    C. E. Dahl, H. P. Biemann, and J. S. Dahl, Stimulation of cell proliferation and polyphosphoinositide turnover in a yeast sterol auxotroph by ergosterol, Fed. Proc. 45: 1886 (1986).Google Scholar
  23. 23.
    W. D. Nes, R. C. Heupel, and P. H. Le, A comparison of sterol biosynthesis in fungi and tracheophytes and its phylogenetic and functional implications in: “Structure, Function and Metabolism of Plant Lipids,” P. A. Siegenthaler and W. Eichenberger, eds., Elsevier Science Publishers, Amsterdam (1984).Google Scholar
  24. 24.
    W. D. Nes, Biosynthesis and requirement for sterols in growth and reproduction of oomycetes, in: “Ecology of Lipids,” G. Fuller and W. D. Nes, eds., ACS Monograph Series, in press (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William R. Nes
    • 1
  1. 1.Department of Bioscience and BiotechnologyDrexel UniversityPhiladelphiaUSA

Personalised recommendations