Impaired Release of Hepatic Triiodothyronine (T3) in the Diabetic Low T3 Syndrome

  • O. V. P. Denardin
  • R. M. B. Maciel
  • E. Menabo
  • E. M. K. Russo
  • D. R. Borges


Previous studies have shown that experimental diabetes causes a significant decrease in serum thyroxine (T4) and 3,5,3′-triiodothyronine (T3) concentrations and reduces hepatic generation of T3 from T4 (1–4). Since hypothyroidism per se induces a reduction in 5′-deiodinase activity (5,6), some studies have suggested that the abnormalities seen in diabetes could be a consequence of this low serum T4 level (7,8). In fact, administration of T4 prevents the decrease in serum T4 concentration and corrects the abnormal T3 production in diabetic animals, but fails to normalize the serum T3 levels (9). Thus, the low T3 syndrome in this situation cannot be fully explained by decreased peripheral conversion of T4 to T3 consequent to a reduction in 5′-deiodinase activity. The present study explores the hypothesis that an alteration of T3 release from intracellular to extracellular space may be an additional factor contributing to the low T3 syndrome observed in diabetes.


Diabetic Animal Perfusion Medium Serum Thyroxine Deiodinase Activity Impaired Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boado R, Brown TJ, Bromage NR, et al. Acta Endocrinol (Kbh) 89: 323, 1978.Google Scholar
  2. 2.
    Zaninovich AA, Brown TJ, Boado R, et al. Acta Endocrinol (Kbh) 86: 336, 1977.Google Scholar
  3. 3.
    Balsam A, Ingbar SH, and Sexton FC: J Clin Invest 62: 415, 1978.PubMedCrossRefGoogle Scholar
  4. 4.
    Pittman CS, Lindsay RH, Senga O, et al. Life Sciences 28: 1677, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaplan MM and Utiger RD: Endocrinology 103: 156, 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Jennings AS, Crutchfield FL, and Dratman MB: Endocrinology 114: 992, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Chopra IJ, Wiersinga W, and Harrison F: Life Sciences 28: 1765, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Gavin LA, McMahon FA, and Moeller M: Diabetes 30: 694, 1981.PubMedGoogle Scholar
  9. 9.
    Jennings AS: Abstracts of the 64th Annual Meeting of the Endocrine Society, Abstract 122, 1982, p 110.Google Scholar
  10. 10.
    Kjeld JM, Kuku SF, Diamant L, et al. Clin Chem Acta 61: 381, 1975.CrossRefGoogle Scholar
  11. 11.
    Borges DR, Limaos EA, and Prado JL: Naunyn-Schimiedeberg’s Arch Pharmacol 295: 33, 1976.CrossRefGoogle Scholar
  12. 12.
    Jennings AS, Ferguson DC, and Utiger RD: J Clin Invest 64: 1614, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaplan MM, and Utiger RD: J Clin Invest 61: 459, 1978.PubMedCrossRefGoogle Scholar
  14. 14.
    Dunnett CW. In JW McArthur and T Colton (eds), Statistics in Endocrinology, The MIT Press, Cambridge, Mass., 1970, p 86.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • O. V. P. Denardin
    • 1
  • R. M. B. Maciel
    • 1
  • E. Menabo
    • 1
  • E. M. K. Russo
    • 1
  • D. R. Borges
    • 1
  1. 1.Division of Endocrinology, Department of MedicineEscola Paulista de MedicinaSao PauloBrazil

Personalised recommendations