Advertisement

Norepinephrine and TSH Stimulation on Iodide Efflux in FRTL-5 Thyroid Cells Involves Metabolites of Arachidonic Acid and is Associated with the Iodination of Thyroglobulin

  • Claudio Marcocci
  • Alberto Luini
  • Pilar Santisteban
  • Evelyn F. Grollman

Abstract

Previous studies in FRTL-5 rat thyroid cells have indicated that TSH and norepinephrine (NE) stimulation of iodide efflux is mediated by a calcium signal, rather than a cAMP signal (1,2). The mechanism by which calcium mobilization signals iodide efflux is unknown in the thyroid or in FRTL-5 thyroid cells. In several systems, calcium mobilization has been associated with an increased breakdown of polyphosphoinositides and subsequent release of arachidonic acid (3). The possible involvement of this biochemical pathway in TSH- and NE-stimulated iodide efflux in FRTL-5 cells is supported by the observation that arachidonic acid stimulates iodide efflux in these cells (1).

Keywords

Arachidonic Acid Calcium Mobilization Arachidonic Acid Metabolism Nordihydroguaiaretic Acid Piperonyl Butoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiss SJ, Philp NJ, and Grollman EF. Endocrinology 114: 1108, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Corda D, Marcocci C, Kohn LD, et al. J Biol Chem 260: 9230, 1985.PubMedGoogle Scholar
  3. 3.
    Berridge MJ. Biochem J 220: 345, 1984.PubMedGoogle Scholar
  4. 4.
    Winand RJ and Kohn LD. J Biol Chem 245: 967, 1970.PubMedGoogle Scholar
  5. 5.
    Ambesi-Impiombato FS, Parks LAM, and Coons HG. Proc Natl Acad Sci USA 77: 3455, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Laemmli UK. Nature 227: 680, 1970.PubMedCrossRefGoogle Scholar
  7. 7.
    Blackwell GL, Duncombe WG, Flower RJ, et al. Br J Pharmacol 59: 353, 1977.PubMedCrossRefGoogle Scholar
  8. 8.
    Walenga RW, Opas EE, and Feinstein MB. J Biol Chem 256: 1 2523, 1981.Google Scholar
  9. 9.
    Lapetina EG, Billah MM, and Cuatrecasas PJ. J Biol Chem 256: 5037, 1981.PubMedGoogle Scholar
  10. 10.
    Capdevila J, Chacos N, Werringloer J, et al. Proc Natl Acad Sci USA 78: 5362, 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Metz S, Van Rollins M, Strife R, et al. J Clin Invest 71: 1191, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Wauwe J and Goossens J. Prostaglandins 25: 725, 1983.Google Scholar
  13. 13.
    Salari H, Braquet P, and Borgeat P. Prostaglandins Leukotriens Med 13: 53, 1984.CrossRefGoogle Scholar
  14. 14.
    Testa B and Jenner P. Drug Metab Rev 12: 1, 1981.PubMedCrossRefGoogle Scholar
  15. 15.
    Capdevila J, Chacos N, Falck JR, et al. Endocrinology 113: 421, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Boeynaems JM, Van Sande J, Decoster C, et al. Prostaglandins 4: 537, 1980.Google Scholar
  17. 17.
    Maayan ML, Volpert EM, and From A. Endocrinology 109: 930, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Claudio Marcocci
    • 1
  • Alberto Luini
    • 2
  • Pilar Santisteban
    • 3
  • Evelyn F. Grollman
    • 3
  1. 1.Cattedra di Endocrinologia e Medicina CostituzionaleUniversita di PisaPisaItaly
  2. 2.Section on Pharmacology Laboratory of Cell BiologyNational Institute of Mental HealthUSA
  3. 3.Section on Cell Regulation, Laboratory of Biochemistry and Metabolism, National Institute of Arthritis Diabetes and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations