Advertisement

Inhibition of Thyroid Peroxidase (TPO) and Lactoperoxidase (LPO) by Goitrin and Ricinine

  • Nicholas M. Alexander
  • Nicolas Zenker

Summary

The plant toxins, goitrin and ricinine, inhibit TPO and LPO. Goitrin (0.3 mM) completely inhibits the peroxidase-catalyzed oxidation of iodide and is nine times more potent than ricinine. Both toxins also inhibit the peroxidase-catalyzed oxidation of guaiacol, although less efficiently than iodide oxidation. Goitrin is oxidized by H2O2 in the presence, but not in the absence, of peroxidase, whereas ricinine is not oxidized. Iodide stimulates (twofold) the rate of goitrin oxidation. Spectra obtained with mixtures of LPO, H2O2, and goitrin indicate that LPOoxid oxidizes goitrin and is converted back to native LPO. Thus, both LPOoxid and LPO-Ioxid oxidize goitrin but LPO-Ioxid is more effective. Because of their well known toxicity, neither of these toxins derived from Brassicae plants (goitrin) and castor beans (ricinine) is considered a serious dietary problem.

Keywords

Glucose Oxidase Castor Bean Potassium Iodide Thyroid Peroxidase Plant Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chesney AM, Clawson TA, and Webster B. Johns Hopkins Hosp Bull 43: 201, 1928.Google Scholar
  2. 2.
    Astwood EB, Greer MA, and Ettlinger MG. J Biol Chem 181: 121, 1949.PubMedGoogle Scholar
  3. 3.
    Astwood EB. Ann Intern Med 30: 1087, 1944.Google Scholar
  4. 4.
    Alexander NM. J Biol Chem 234: 1530, 1959.PubMedGoogle Scholar
  5. 5.
    Taurog A. In SC Werner and SH Ingbar (eds), The Thyroid, Harper and Row, New York, 1978, p 31.Google Scholar
  6. 6.
    Ettlinger MG. J Am Chem Soc 72: 4792, 1950.CrossRefGoogle Scholar
  7. 7.
    Alexander NM. Endocrinology 100: 1610, 1977.PubMedCrossRefGoogle Scholar
  8. 8.
    Alexander NM. Anal Biochem 4: 341, 1962.PubMedCrossRefGoogle Scholar
  9. 9.
    Langer P and Michajlovskij N. Endocrinologia Experimentalis 6: 97, 1972.PubMedGoogle Scholar
  10. 10.
    Ohtaki S, Nakagawa H, Nakamura M, et al. J Biol Chem 257: 761, 1982.PubMedGoogle Scholar
  11. 11.
    Engler H, Taurog A, and Nakashima T. Biochem Pharmacol 31: 3801, 1982.PubMedCrossRefGoogle Scholar
  12. 12.
    Davidson B, Soodak M, Strout HV, et al. Endocrinology 104: 919, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Neary JT, Soodak M, and Maloof F. In F Wold and K Moldave (eds), Methods in Enzymology, Academic Press, New York, 1984, p 445.Google Scholar
  14. 14.
    Engler H, Taurog A, Luthy C, et al. Endocrinology 112: 86, 1983.PubMedCrossRefGoogle Scholar
  15. 15.
    Taurog A. Endocrinology 98: 1031, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Shiroozu A, Taurog A, Engler H, et al. Endocrinology 113: 362, 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Edelhoch H, Irace G, Johnson ML, et al. J Biol Chem 254: 1 1822, 1979.Google Scholar
  18. 18.
    Pahuja DN, Gavnekar SV, Shah DH, et al. Biochem Pharmacol 28: 641, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Nicholas M. Alexander
    • 1
  • Nicolas Zenker
    • 2
  1. 1.Department of PathologyUCSD School of MedicineSan DiegoUSA
  2. 2.Department of Medicinal Chemistry and PharmacognosyUniversity of MarylandBaltimoreUSA

Personalised recommendations