Skip to main content

Control of Yeast Gene Expression by Transposable Elements

  • Chapter
Extrachromosomal Elements in Lower Eukaryotes

Part of the book series: Basic Life Sciences ((BLSC,volume 40))

Abstract

The Ty (transposon yeast) elements of Saccharomyces cerevisiae comprise a family of dispersed, repeated DNA sequences (see Ref. 11, 13, and 19 for reviews). Each element consists of an internal region, referred to as epsilon, flanked by direct terminal repeats known as delta sequences. The epsilon region is approximately 5.4 kbp in length, and the delta sequences are about 335 bp long. The Ty elements display considerable sequence divergence. In general, the elements can be divided into two classes known as Ty1 and Ty2; these classes differ from each other by two large blocks of heterologous sequence. In the haploid genomes of most laboratory strains of yeast, there are 25 to 30 Ty1 elements and five to six Ty2 elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boeke, J.D., D.J. Garfinkel, C.A. Styles, and G.R. Fink (1985) Ty elements transpose through an RNA Intermediate. Cell 40:491–500.

    Article  PubMed  CAS  Google Scholar 

  2. Dubois, E., E. Jacobs, and J.-C. Jauniaux (1982) Expression of the ROAM mutations in Saccharomyces cerevisiae: Involvement of transacting regulatory elements and relation with the Ty1 transcription. EMBO J. 1:1133–1139.

    PubMed  CAS  Google Scholar 

  3. Elder, R.T., E.Y. Yoh, and R.W. Davis (1983) RNA from the yeast trans-posable element Tyl has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci., USA 80:2432–2436.

    Article  PubMed  CAS  Google Scholar 

  4. Elder, R.T., T.P. St. John, D.T. Stinchcomb, and R.W. Davis (1980) Studies on the transposable element Tyl of yeast. I. RNA homologous to Tyl. Cold Spring Harbor Symp. Quant. Biol. 45:581–584.

    Article  Google Scholar 

  5. Errede, B., T.S. Cardillo, G. Wever, and F. Sherman (1980) Studies on transposable elements in yeast. I. ROAM mutations causing increased expression of yeast genes: Their activation by signals directed toward cojugation functions and their formation by insertion of Ty1 repetitive elements. Cold Spring Harbor Symp. Quant. Biol. 45:593–602.

    Article  Google Scholar 

  6. Errede, B., M. Company, J.D. Ferchak, C.A. Hutchison III, and W.S. Yarnell (1985) Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers. Proc. Natl. Acad. Sci., USA 82:5423–5427.

    Article  PubMed  CAS  Google Scholar 

  7. Errede, B., T.S. Cardillo, F. Sherman, E. Dubois, J. Deschamps, and J.-M. Wiame (1980) Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 20:427–436.

    Article  Google Scholar 

  8. Garfinkel, D.J., J.D. Boeke, and G.R. Fink (1985) Ty element transposition: Reverse transcriptase and virus-like particles. Cell 42: 507–517.

    Article  PubMed  CAS  Google Scholar 

  9. Guarente, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. In Methods in Enzymology, Vol. 101, L. Grossman and K. Moldave, eds. Academic Press, Inc., New York, pp. 181–191.

    Google Scholar 

  10. Khoury, G., and P. Gruss (1983) Enhancer elements. Cell 33:313–314.

    Article  PubMed  CAS  Google Scholar 

  11. Roeder, G.S. (1984) Yeast transposons. In Genetic Engineering: Principles and Methods, Vol. 6, J.K. Setlow and A. Hollaender, eds. Plenum Press, New York, pp. 67–89.

    Google Scholar 

  12. Roeder, G.S., and G.R. Fink (1982) Movement of yeast transposable elements by gene conversion. Proc. Natl. Acad. Sci., USA 79:5621–5625.

    Article  PubMed  CAS  Google Scholar 

  13. Roeder, G.S., and G.R. Fink (1983) Transposable elements in yeast. In Mobile Genetic Elements, J.A. Shapiro, ed. Academic Press, Inc., New York, pp. 299–328.

    Google Scholar 

  14. Roeder, G.S., A.B. Rose, and R.E. Pearlman (1985) Transposable element sequences involved in the enhancement of yeast gene expression. Proc. Natl. Acad. Sci., USA 82:5428–5432.

    Article  PubMed  CAS  Google Scholar 

  15. Roeder, G.S., P.J. Farabaugh, D.T. Chaleff, and G.R. Fink (1980) The origins of gene instability in yeast. Science 209:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  16. Taguchi, A.K.W., M. Ciriacy, and E.T. Young (1984) Carbon source dependence of transposable element-associated gene activation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:61–68.

    PubMed  CAS  Google Scholar 

  17. Wasylyk, B., C. Wasylyk, P. Augereau, and P. Chambon (1983) The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32:503–514.

    Article  PubMed  CAS  Google Scholar 

  18. Weiher, H., M. Konig, and P. Gruss (1983) Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631.

    Article  PubMed  CAS  Google Scholar 

  19. Williamson, V.M. (1983) Transposable elements in yeast. Int. Rev. Cytol. 83:1–25.

    Article  PubMed  CAS  Google Scholar 

  20. Williamson, V.M., E.T. Young, and M. Ciriacy (1981) Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell 23:605–614.

    Article  PubMed  CAS  Google Scholar 

  21. Williamson, V.M., D. Cox, E.T. Young, D.W. Russell, and M. Smith (1983) Mol. Cell. Biol. 3:20–31.

    PubMed  CAS  Google Scholar 

  22. Winston, F., K.J. Durbin, and G.R. Fink (1984) The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682.

    Article  PubMed  CAS  Google Scholar 

  23. Young, T., V. Williamson, A. Taguchi, M. Smith, A. Sledziewski, D. Russell, J. Osterman, C. Denis, D. Cox, and D. Beier (1982) The alcohol dehydrogenase genes of the yeast, Saccharomyces cerevisiae: Isolation, structure and regulation. In Genetic Engineering of Microorganisms for Chemicals, A. Hollaender, R.D. DeMoss, S. Kaplan, J. Konisky, D. Savage, and R.S. Wolfe, eds. Plenum Press, New York, pp. 335–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Roeder, G.S., Coney, L.R., Pearlman, R.E., Rose, A.B. (1986). Control of Yeast Gene Expression by Transposable Elements. In: Wickner, R.B., et al. Extrachromosomal Elements in Lower Eukaryotes. Basic Life Sciences, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5251-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5251-8_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5253-2

  • Online ISBN: 978-1-4684-5251-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics