Advertisement

Distribution of Telomere-Associated Sequences in Yeast

  • Virginia A. Zakian
  • Harriet M. Blanton
  • Liebchen Wetzel
Part of the Basic Life Sciences book series (BLSC, volume 40)

Abstract

Two middle repetitive DNA sequences called X and Y’ are found near the telomeres of many chromosomes in Saccharomyces cerevisiae. Orthogonal field gel electrophoresis (OFAGE) was used to examine the distribution of X and Y’ on different yeast chromosomes. Although the distribution of X and Y’ varies among different laboratory strains of yeast, most yeast chromosomes in four different strains carry both X and Y’. However, at least one chromosome in each strain lacks the Y’ element. This result indicates that Y’ is not essential for replication or segregation of at least some yeast chromosomes.

Keywords

Yeast Strain Strain AB972 Yeast Chromosome Strain DC04 Internal Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedbrook, J.R., J. Jones, M. O’Dell, R.D. Thompson, and R.B. Flavell (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560.PubMedCrossRefGoogle Scholar
  2. 2.
    Blackburn, E.H. (1984) Telomeres: Do the ends justify the means? Cell 37:7–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Blackburn, E.H., and J.W. Szostak (1984) The molecular structure of centromeres and telomeres. Ann. Rev. Blochem. 53:163–194.CrossRefGoogle Scholar
  4. 4.
    Button, L.L., and C.R. Astell (1986) The Saccharomyces cerevisiae chromosome III left telomere has a type X, but not a type Y’, ARS region. Mol. Cell. Biol. 6:1352–1356.PubMedGoogle Scholar
  5. 5.
    Carle, G.F., and M.V. Olson (1984) Separation of chromosomal DNA from yeast by orthogonal field alteration gel electrophoresis. Nucl. Acids Res. 12:5647–5664.PubMedCrossRefGoogle Scholar
  6. 6.
    Carle, G.F., and M.V. Olson (1985) An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci., USA 82:3756–3760.PubMedCrossRefGoogle Scholar
  7. 7.
    Chan, C.S.M., and B.-K. Tye (1980) Autonomously replicating sequences in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 77:6329–6333.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan, C.S.M., and B.-K. Tye (1983) A family of Saccharomyces cerevisiae repetitive autonomously replicating sequences that have very similar genomic environments. J. Mol. Biol. 168:505–523.PubMedCrossRefGoogle Scholar
  9. 9.
    Chan, C.S.M., and B.-K. Tye (1983) Organization of DNA sequences and replication origins at yeast telomeres. Cell 33:563–573.PubMedCrossRefGoogle Scholar
  10. 10.
    Dunn, B., P. Szauter, M.L. Pardue, and J.W. Szostak (1984) Transfer of yeast telomeres to linear plasmids by recombination. Cell 39:191–201.PubMedCrossRefGoogle Scholar
  11. 11.
    Horowitz, H., and J.E. Haber (1985) Identification of autonomously replicating circular Y’ subtelomeric elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2369–2380.PubMedGoogle Scholar
  12. 12.
    Horowitz, H., P. Thorburn, and J.E. Haber (1984) Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2509–2517.PubMedGoogle Scholar
  13. 13.
    Jones, J.D.G., and R.B. Flavell (1982) Chromosomal structure and arrangement of repeated DNA sequences in the telomeric heterochromatin of Secale cereale and its relatives. Cold Spring Harbor Symp. Quant. Biol. 47:1209–1213.CrossRefGoogle Scholar
  14. 14.
    Mortimer, R.K., and D. Schild (1980) Genetic map of Saccharomyces cerevisiae. Microbiol. Rev. 44:519–571.PubMedGoogle Scholar
  15. 15.
    Saija, H., and J.E. Edstrom (1985) Long tandem arrays of complex repeat units in Chironomus telomeres. EMBO J. 4:799–804.Google Scholar
  16. 16.
    Schwartz, D.C., and C.R. Cantor (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Shampay, J., J.W. Szostak, and E.H. Blackburn (1984) DNA sequences of telomeres maintained in yeast. Nature 310:154–157.PubMedCrossRefGoogle Scholar
  18. 18.
    Walmsley, R.M., and T.D. Petes (1985) Genetic control of chromosome length in yeast. Proc. Natl. Acad. Sci., USA 82:506–510.Google Scholar
  19. 19.
    Walmsley, R.M., J.W. Szostak, and T.D. Petes (1983) Is there left-handed DNA at the ends of yeast chromosomes? Nature 302:84–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Walmsley, R.M., C.S.M. Chan, B.-K. Tye, and T.D. Petes (1984) Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310:157–160.PubMedCrossRefGoogle Scholar
  21. 21.
    Young, B.S., A. Pession, K.L. Traverse, C. French, and M.L. Pardue (1983) Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell 34:85–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Zakian, V.A., and J.F. Scott (1982) Construction, replication, and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Mol. Cell. Biol. 2:221–232.PubMedGoogle Scholar
  23. 23.
    Zakian, V.A., H.M. Blanton, L. Wetzel, and G.M. Dani (1986) A size threshold for yeast chromosomes: Generation of telocentric chromosomes from an unstable mini-chromosome. Mol. Cell. Biol. 6:925–932.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Virginia A. Zakian
    • 1
  • Harriet M. Blanton
    • 1
  • Liebchen Wetzel
    • 1
  1. 1.Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations