Site-Specific Recombination of the Yeast Plasmid Two-Micron Circle: Intermediates in the Binding Process

  • Brenda J. Andrews
  • Linda G. Beatty
  • Paul D. Sadowski
Part of the Basic Life Sciences book series (BLSC, volume 40)


Site-specific recombination performs an important role in the life cycle of several extrachromosomal elements. For example, the integration and excision of bacteriophage chromosomes (30), the resolution of co-integrate structures formed during the movement of bacterial transposons such as Tn3 (14), the segregation of lysogenic phage P1 (4), and the control of the host range of phages Mu and P1 (20) are all processes dependent on the action of site-specific recombination proteins or recombinases.


Sodium Dodecyl Sulfate Core Region Recombination Reaction Symmetry Element Nuclease Digestion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, B.J., M. McLeod, J. Broach, and P.D. Sadowski (1986) Interaction of the FLP recombinase of the yeast 2-micron plasmid with mutated target sequences. Mol. Cell. Biol. (in press).Google Scholar
  2. 2.
    Andrews, B.J., G.A. Proteau, L.G. Beatty, and P.D. Sadowski (1985) The FLP recombinase of the 2-micron circle DNA of yeast: Interaction with its target sequences. Cell 40:795–803.PubMedCrossRefGoogle Scholar
  3. 3.
    Araki, H., A. Jearnpipatkul, H. Tatsumi, T. Sakurai, K. Ushio, T. Muta, and Y. Oshima (1985) Molecular and functional organization of yeast plasmid pSR1. J. Mol. Biol. 182:191–203.PubMedCrossRefGoogle Scholar
  4. 4.
    Austin, S., M. Ziese, and N. Sternberg (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736.PubMedCrossRefGoogle Scholar
  5. 5.
    Babineau, D., D. Vetter, B. Andrews, R.G. Gronostajski, G. Proteau, L.G. Beatty, and P.D. Sadowski (1985) The FLP protein of the 2-micron plasmid of yeast. Purification of the protein from Escherichia coli cells expressing the cloned FLP gene. J. Biol. Chem. 260:12313–12319.PubMedGoogle Scholar
  6. 6.
    Birnboim, H.C., and J. Doly (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7:1513–1523.PubMedCrossRefGoogle Scholar
  7. 7.
    Broach, J.R. (1983) Construction of high copy yeast vectors using 2-micron circle sequences. In Methods in Enzymology, Vol.101, L. Grossman and K. Moldave, eds. Academic Press, Inc., New York, pp. 307–325.Google Scholar
  8. 8.
    Broach, J.R., V.R. Guarascio, and M. Jayaram (1982) Recombination within the yeast plasmid 2-micron circle is site-specific. Cell 29:227–234.PubMedCrossRefGoogle Scholar
  9. 9.
    Carey, M., S. Gerrard, and N. Cozzarelli (1986) Analysis of RNA polymerase III transcription complexes by gel filtration. J. Biol. Chem. 261:4309–4317.PubMedGoogle Scholar
  10. 10.
    Celniker, S.E., and J.L. Campbell (1982) Yeast DNA replication in vitro: Initiation and elongation mimic in vivo processes. Cell 31:210–213.CrossRefGoogle Scholar
  11. 11.
    Fried, M., and D.M. Crothers (1981) Equilibria and kinetics of lac repressor-operator interactions by Polyacrylamide gel electrophoresis. Nucl. Acids Res. 9:6505–6525.PubMedCrossRefGoogle Scholar
  12. 12.
    Futcher, A.B. (1986) Copy number amplification of the 2-micron circle plasmid of Saccharomyces cerevisiae. J. Theoret. Biol. (in press).Google Scholar
  13. 13.
    Garner, M.M., and A. Revzin (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Application to components of the Escherichia coli lactose Operon regulatory system. Nucl. Acids Res. 9:3047–3060.PubMedCrossRefGoogle Scholar
  14. 14.
    Grindley, N.D.F., and R.R. Reed (1985) Transpositional recombination in prokaryotes. Ann. Rev. Biochem. 54:863–896.PubMedCrossRefGoogle Scholar
  15. 15.
    Gronostajski, R.M., and P.D. Sadowski (1985) The FLP protein of the 2-micron plasmid of yeast. Inter- and intramolecular reactions. J. Biol. Chem. 260:12328–12335.PubMedGoogle Scholar
  16. 16.
    Gronstajski, R.M., and P.D. Sadowski (1985) The FLP recombinase of the yeast 2-micron plasmid attaches covalently to DNA via a phosphotyrosyl linkage. Mol. Cell. Biol. 5:3247–3279.Google Scholar
  17. 17.
    Hartley, J.L., and J.E. Donelson (1980) Nucleotide sequence of the yeast plasmid. Nature 286:860–865.PubMedCrossRefGoogle Scholar
  18. 18.
    Jayaram, M. (1985) Two-micron circle site-specific recombination: The minimal substrate and the possible role of flanking sequences. Proc. Natl. Acad. Sci., USA 82:5875–5879.PubMedCrossRefGoogle Scholar
  19. 19.
    Jayaram, M., A. Sutton, and J.R. Broach (1985) Properties of REP3: A cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2-micron circle. Mol. Cell. Biol. 5:2466–2475.PubMedGoogle Scholar
  20. 20.
    Kahmann, R., F. Rudt, C. Koch, and G. Mertens (1985) G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41:771–780.PubMedCrossRefGoogle Scholar
  21. 21.
    Kerr, and P.D. Sadowski (1972) Gene 6 exonuclease of bacteriophage T7. II. Mechanism of the reaction. J. Biol. Chem. 247:311.PubMedGoogle Scholar
  22. 22.
    Maxam, A.M., and W. Gilbert (1980) Sequencing end-labelled DNA with base-specific chemical cleavages. In Methods in Enzymology, Vol. 65, L. Grossman and K. Moldave, eds. Academic Press, Inc., New York, pp. 499–560.Google Scholar
  23. 23.
    Proteau, G.A., D. Sidenberg, and P.D. Sadowski (1986) The minimal duplex DNA sequence required for site-specific recombination promoted by the FLP protein of yeast in vitro. Nucl. Acids Res. (in press).Google Scholar
  24. 24.
    Senecoff, J.F., R.C. Bruckner, and M.M. Cox (1985) The FLP recombinase of the yeast 2-micron plasmid: Characterization of its recombination site. Proc. Natl. Acad. Sci., USA 82:7270–7274.CrossRefGoogle Scholar
  25. 25.
    Siebenlist, U., R. Simpson, and W. Gilbert (1980) E. coli RNA polymerase interacts homologously with two different promoters. Cell 20:269–281.PubMedCrossRefGoogle Scholar
  26. 26.
    Singh, H., R. Sen, D. Baltimore, and P. Sharp (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319:154–158.PubMedCrossRefGoogle Scholar
  27. 27.
    Strauss, F., and A. Varshavsky (1984) A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37:889–901.PubMedCrossRefGoogle Scholar
  28. 28.
    Topol, J., D.M. Ruden, and CS. Parker (1985) Sequences required for in vitro transcriptional activations of a Drosophila hsp70 gene. Cell 42:527–537.PubMedCrossRefGoogle Scholar
  29. 29.
    Volkert, F., and J. Broach (1986) Site-specific recombination promotes plasmid amplification in yeast. Cell (in press).Google Scholar
  30. 30.
    Weisberg, R.A., and A. Landy (1983) Site-specific recombination in phage lambda. In Lambda II, R.W. Hendrix, J.W. Roberts, F.W. Stahl, and R.A. Weisberg, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 211–250.Google Scholar
  31. 31.
    Wu, H., and D. Crothers (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Brenda J. Andrews
    • 1
  • Linda G. Beatty
    • 1
  • Paul D. Sadowski
    • 1
  1. 1.Department of Medical GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations