Mobile Elements in the Yeast Mitochondrial Genome

  • Ronald A. Butow
  • Andrew R. Zinn
Part of the Basic Life Sciences book series (BLSC, volume 40)


The yeast mitochondrial genome is known to contain an assortment of optional DNA sequences composed primarily of introns, short GC-rich regions (GC clusters), and AT-rich stretches. Since these sequences are optional and present no obvious selection pressure to cells, it is easy to follow their genetic behavior in crosses together with other markers on the mitochondrial genome. Leaving aside the question of why the mitochondrial genome has retained these optional sequences, recent studies have led to the interesting result that some of them show unusual properties in genetic recombination (3).


Gene Conversion Var1 Gene Mitochondrial Intron Intron Insertion Site Open Reading Frame Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, N.J., P.S. Perlman, D.K. Hanson, and H.R. Mahler (1980) Mosaic organization of a mitochondrial gene: Evidence from double mutants in the cytochrome b region of Saccharomyces cerevisiae. Cell 20:199–206.PubMedCrossRefGoogle Scholar
  2. 2.
    Bolotin, M., D. Coen, J. Deutsch, B. Dujon, P. Netter, E. Petrochilo, and P.P. Slonimski (1971) La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull. Inst. Pasteur 69:215–239.Google Scholar
  3. 3.
    Butow, R.A. (1985) Nonreciprocal exchanges in the yeast mitochondrial genome. Trends Genet. 1:81–84.CrossRefGoogle Scholar
  4. 4.
    Butow, R.A., P.S. Perlman, and L.I. Grossman (1985) The unusual varl gene of yeast mitochondrial DNA. Science 228:1496–1501.PubMedCrossRefGoogle Scholar
  5. 5.
    Colleaux, L., L. d’Auriol, M. Betermier, G. Cottarel, A. Facquier, F. Galibert, and B. Dujon (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. cole as a specific double-strand endonuclease. Cell 44:521–533.PubMedCrossRefGoogle Scholar
  6. 6.
    Dujon, B. (1980) Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω and rib-1 loci. Cell 20:185–197.PubMedCrossRefGoogle Scholar
  7. 7.
    Dujon, B. (1981) Mitochondrial genetics and functions. In The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, J.N. Strathern, E.W. Jones, and J.R. Broach, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 505–635.Google Scholar
  8. 8.
    Dujon, B., and P.P. Slonimski (1976) Mechanisms and rules for transmission, recombination and segregation of mitochondrial genes in Saccharomyces cerevisiae. In Genetics and Biogenesis of Chloroplasts and Mitochondria, T. Bucher, W. Neupert, W. Sebald, and S. Werner, eds. Elsevier/North-Holland, Amsterdam, pp. 393–403.Google Scholar
  9. 9.
    Dujon, B., P.P. Slonimski, and L. Weill (1974) Mitochondrial genetics IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78:415–437.PubMedGoogle Scholar
  10. 10.
    Gilbert, W. (1986) The RNA world. Nature 319:618.CrossRefGoogle Scholar
  11. 11.
    Grindley, N.D.F., and R.R. Reed (1985) Transpositional recombination in prokaryotes. Ann. Rev. Biochem. 54:863–896.PubMedCrossRefGoogle Scholar
  12. 12.
    Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace, and S. Altman (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857.PubMedCrossRefGoogle Scholar
  13. 13.
    Jacquier, A., and B. Dujon (1983) The intron of the mitochondrial 21S rRNA gene: Distribution in different yeast species and sequence comparison between Kluyveromyces thermoto1erans and Saccharomyces cerevisiae. Mol. Gen. Genet. 192:487–499.PubMedCrossRefGoogle Scholar
  14. 14.
    Jacquier, A., and B. Dujon (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394.PubMedCrossRefGoogle Scholar
  15. 15.
    Kostriken, R., J.N. Strathern, A.J.S. Klar, J.B. Hicks, and F. Heffron (1983) A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35:167–174.PubMedCrossRefGoogle Scholar
  16. 16.
    Kruger, K., P.J. Grabowski, A.J. Zang, J. Snads, D.E. Gottschling, and T.R. Cech (1982) Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 117–157.CrossRefGoogle Scholar
  17. 17.
    Lazowska, J., C. Jacq, and P.P. Slonimski (1980) Sequence of introns and flanking exons in the wild-type and box3 mutants of the mitochondrial cytochrome b gene reveals an interlaced splicing protein coded by an intron. Cell 22:333–348.PubMedCrossRefGoogle Scholar
  18. 18.
    Macreadie, I.G., A.R. Zinn, and R.A. Butow (1985) The yeast mitochondrial fitl gene. In Achievements and Perspectives of Mitochondrial Research. Vol. II. Biogenesis, E. Quagliariello, E.C. Slater, F. Palmieri, C. Saccone, and A.M. Kroon, eds. Elsevier, Amsterdam, pp. 349–354.Google Scholar
  19. 19.
    Macreadie, I.G., R.M. Scott, A.R. Zinn, and R.A. Butow (1985) Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41:395–402.PubMedCrossRefGoogle Scholar
  20. 20.
    Morisato, D., and N. Kleckner (1984) Transposase promotes doublestrand breaks and single-strand joints at Tn10 termini in vivo. Cell 39:181–190.PubMedCrossRefGoogle Scholar
  21. 21.
    Schmelzer, C., A. Haid, G. Grosch, R.J. Schweyen, and F. Kaudewitz (1981) Pathways of transcript splicing in yeast mitochondria. Mutations in intervening sequences of the split gene cob reveal a requirement for intervening sequence-encoded products. J. Biol. Chem. 256: 7610–7619.PubMedGoogle Scholar
  22. 22.
    Strathern, J.N., A.J.S. Klar, J.B. Hicks, J.A. Abraham, J.M. Ivy, K.A. Nasmyth, and C. McGill (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192.PubMedCrossRefGoogle Scholar
  23. 23.
    Szostak, J.W., T.L. Orr-Weaver, R.J. Rothstein, and F.W. Stahl (1983) The double-strand-break repair model for recombination. Cell 33:25–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Zang, A.J., and T.R. Cech (1986) The intervening sequence RNA of Tetrahymena is an enzyme. Science 231:470–475.CrossRefGoogle Scholar
  25. 25.
    Zinn, A.R., and R.A. Butow (1984) Kinetics and intermediates of yeast mitochondrial DNA recombination. Cold Spring Harbor Symp. Quant. Biol. 49:115–121.PubMedCrossRefGoogle Scholar
  26. 26.
    Zinn, A.R., and R.A. Butow (1985) Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: Kinetics and the involvement of a double-strand break. Cell 40:887–895.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ronald A. Butow
    • 1
  • Andrew R. Zinn
    • 1
  1. 1.Department of BiochemistryThe University of Texas Health Science CenterDallasUSA

Personalised recommendations