Genetic Properties of Linkage Group XIX in Chlamydomonas Reinhardtii

  • Susan K. Dutcher
Part of the Basic Life Sciences book series (BLSC, volume 40)


At the base of all eukaryotic flagella is a structure known as the basal body (12). It is about 400 nm in length and is composed of triplet microtubules with a stereotyped pattern of appendages along its length. Basal bodies are morphologically similar to centrioles, which are found in a perinuclear location. The two different names reflect the different cellular locations of the same structure and the different cellular functions proposed for them. It has been suggested that basal bodies are required for the assembly of flagella. This supposition is supported by the observation that these structures are found attached to flagella in all flagellated eukaryotic cells during some or all of the cell cycle. This idea is supported further by the phenotype of mutations in Chlamydomonas that have extra basal bodies; these cells also have additional flagella (67). In addition, a mutant with morphologically altered basal bodies does not make flagella (14).


Linkage Group Basal Body Genetic Property Circular Molecule Radial Spoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, G.M.W., B. Huang, and D.J.L. Luck (1982) Temperature-sensitive, assembly defective flagella mutants of Chlamydomonas reinhardtii. Genetics 100:579–586.PubMedGoogle Scholar
  2. 2.
    Adams, G.M.W., B. Huang, G. Piperno, and D.J.L. Luck (1981) Central pair microtubular complex of Chlamydomonas flagella: Polypeptide composition as revealed by analysis of mutants. J. Cell Biol. 91:69–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Brokaw, C.J., D.J.L. Luck, and B. Huang (1982) Analysis of the movement of Chlamydomonas flagella: The function of the radial spoke system as revealed by comparison of wild-type and mutant flagella. J. Cell Biol. 92:722–732.PubMedCrossRefGoogle Scholar
  4. 4.
    Cairns, J. (1963) The chromosome of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28:43–61.CrossRefGoogle Scholar
  5. 5.
    Clark, L., and J. Carbon (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509.CrossRefGoogle Scholar
  6. 6.
    Dippell, R.V. (1968) The development of basal bodies in Paramecium. Proc. Natl. Acad. Sci., USA 61:461–468.PubMedCrossRefGoogle Scholar
  7. 7.
    Dobberstein, B., G. Blobel, and N.-H. Chua (1977) In vitro synthesis and processing of a putative precursor of the small subunit of ribulose-bis phosphate carboxylase. Proc. Natl. Acad. Sci., USA 74:1082–1087.PubMedCrossRefGoogle Scholar
  8. 8.
    Dutcher, S.K., and L.H. Hartwell (1983) Genes that act before conjugation to prepare the Saccharomyces cerevisiae nucleus for caryogamy. Cell 33:203–210.PubMedCrossRefGoogle Scholar
  9. 9.
    Dutcher, S.K., B. Huang, and D.J.L. Luck (1984) Genetic analysis of central pair microtubules of the flagella of Chlamydomonas reinhardtii. J. Cell Biol. 98:229–236.PubMedCrossRefGoogle Scholar
  10. 10.
    Ebersold, W.T. (1967) Chlamydomonas reinhardtii heterozygous diploid strains. Science 157:447–449.PubMedCrossRefGoogle Scholar
  11. 11.
    Fulton, C. (1971) Centrioles. In Origin and Continuity of Cell Organelles, J. Reinert and H. Ursprung, eds. Springer-Verlag, New York, pp. 170–221.Google Scholar
  12. 12.
    Gibbons, I. (1981) Cilia and flagella in eukaryotes. J. Cell Biol. 254:187–196.Google Scholar
  13. 13.
    Goddard, J.M., and D.J. Cummings (1977) Mitochondrial DNA replication in Paramecium aurelia. J. Mol. Biol. 109:327–344.PubMedCrossRefGoogle Scholar
  14. 14.
    Goodenough, U.W., and H.S. St. Clair (1975) Bald-2: A mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J. Cell Biol. 66:480–491.PubMedCrossRefGoogle Scholar
  15. 15.
    Haber, J.E., P.C. Thorburn, and D. Rogers (1984) Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185–205.PubMedGoogle Scholar
  16. 16.
    Haidane, J.B.S. (1931) The cytological basis of genetical interference. Cytologia 3:54–65.CrossRefGoogle Scholar
  17. 17.
    Harris, E.H. (1982) Chlamydomonas reinhardtii. In Genetic Maps, S. O’Brien, ed. National Cancer Institute, Washington, D.C., pp. 168–172.Google Scholar
  18. 18.
    Heidemann, S.R., G. Sander, and M.W. Kirschner (1977) Evidence for a functional role of RNA in centrioles. Cell 10:337–350.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoffman, E.J. (1965) The nucleic acids of basal bodies isolated from Tetrahymena. J. Cell Biol. 25:217–228.PubMedCrossRefGoogle Scholar
  20. 20.
    Hopwood, D.A. (1964) A circular linkage map in the Actinomycete, Streptomyces coelicolor. 109:327–344.Google Scholar
  21. 21.
    Huang, B., G. Piperno, and D.J.L. Luck (1979) Paralyzed flagella mutants of Chlamydomonas reinhardtii defective for axonemal doublet microtubule arms. J. Biol. Chem. 254:3091–3099.PubMedGoogle Scholar
  22. 22.
    Huang, B., Z. Ramanis, and D.J.L. Luck (1982) Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 28:115–124.PubMedCrossRefGoogle Scholar
  23. 23.
    Huang, B., M.R. Rifkin, and D.J.L. Luck (1977) Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J. Cell Biol. 62:67–85.CrossRefGoogle Scholar
  24. 24.
    Huang, B., G. Piperno, Z. Ramanis, and D.J.L. Luck (1981) Radial spokes of Chlamydomonas flagella: Genetic analysis of assembly and function. J. Cell Biol. 88:80–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Huang, B., Z. Ramanis, S.K. Dutcher, and D.J.L. Luck (1982) Uniflagellar mutants of Chlamydomonas: Evidence for the role of basal bodies in transmission of positional information. Cell 29:745–753.PubMedCrossRefGoogle Scholar
  26. 26.
    Hufnagel, L. (1969) Properties of DNA associated with raffinose-isolated pellicles of Paramecium. J. Cell Sci. 5:561–573.PubMedGoogle Scholar
  27. 27.
    Inwood, W., and S.K. Dutcher (1986) Biochemical and cytological phenotypes of bit2–1: A suppressor of the abnormal swimming mutant pf10 in Chlamydomonas reinhardtii. J. Cell Biol, (submitted for publication).Google Scholar
  28. 28.
    Inwood, W., and S.K. Dutcher (1986) A genetic analysis of the pf10 mutation in Chlamydomonas reinhardtii. Genetics (submitted for publication).Google Scholar
  29. 29.
    Klobutcher, L.A., M.T. Swanton, P. Domini, and D.M. Prescott (1981) All gene sized DNA molecules in four species of hypotrichs have the same terminal sequences and unusual 3’ terminus. Proc. Natl. Acad. Sci., USA 78:3015–3019.PubMedCrossRefGoogle Scholar
  30. 30.
    Lewin, R.A. (1954) Mutants of Chlamydomonas moewusii with impaired motility. Can. J. Microbiol. 6:21.CrossRefGoogle Scholar
  31. 31.
    Luck, D.J.L. (1984) Genetic and biochemical dissection of the eukary-otiç flagellum. J. Cell Biol. 98:789–794.PubMedCrossRefGoogle Scholar
  32. 32.
    Luck, D.J.L., G. Piperno, Z. Ramanis, and B. Huang (1977) Flagellar mutants of Chlamydomonas: Studies of radial-spoke defective strains by dikaryon and revertant analysis. Proc. Natl. Acad. Sci., USA 74:3456–3460.PubMedCrossRefGoogle Scholar
  33. 33.
    Lwoff, A. (1950) Problems in Morphogenesis in Ciliates: The Kineto somes in Development, Reproduction, and Evolution, John Wiley and Sons, New York.Google Scholar
  34. 34.
    Mann, C, and R.W. Davis (1983) Instability of dicentric plasmids in yeast. Proc. Natl. Acad. Sci., USA 80:228–232.PubMedCrossRefGoogle Scholar
  35. 35.
    McClintock, B. (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376.PubMedGoogle Scholar
  36. 36.
    McClintock, B. (1941) The stability of broken ends of chromosomes of Zea mays. Genetics 26:234–282.PubMedGoogle Scholar
  37. 37.
    McVittie, A. (1972) Flagellum mutants of Chlamydomonas reinhardtii. J. Gen. Microbiol. 71:525–540.PubMedGoogle Scholar
  38. 38.
    McVittie, A. (1972) Genetic studies on flagellum mutants of Chlamydo-monas reinhardtii. Genet. Res. Camb. 19:157–164.CrossRefGoogle Scholar
  39. 39.
    McVittie, A., and D.R. Davies (1971) The location of the Mendelian linkage groups of Chlamydomonas reinhardtii. Mol. Gen. Genet. 112:225–228.Google Scholar
  40. 40.
    Merrill, R., D. Goldman, S.A. Sedman, and M.H. Ebert (1981) Ultrasensitive stain for proteins in Polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438.CrossRefGoogle Scholar
  41. 41.
    Mitchell, D.R., and J.L. Rosenbaum (1985) A motile Chlamydomonas flagellar mutant that lacks outer dynein arms. J. Cell Biol. 100:1228–1234.PubMedCrossRefGoogle Scholar
  42. 42.
    Muller, H.J. (1938) The remaking of chromosomes. The Collecting Net (Woods Hole) 13:181–198.Google Scholar
  43. 43.
    Papazian, H.P. (1952) The analysis of tetrad data. Genetics 37:175–188.PubMedGoogle Scholar
  44. 44.
    Perkins, D.D. (1952) The detection of linkage in tetrad analysis. Genetics 38:187–197.Google Scholar
  45. 45.
    Perkins, D.D. (1962) The frequency in Neurospora tetrads of multiple exchanges within short intervals. Genet. Res. Camb. 3:315–327.CrossRefGoogle Scholar
  46. 46.
    Piperno, G., and D.J.L. Luck (1979) Axonemal adenosine triphosphatase from flagella of Chlamydomonas reinhardtii: Purification of two dy-neins. J. Biol. Chem. 254:3084–3090.PubMedGoogle Scholar
  47. 47.
    Piperno, G., and D.J.L. Luck (1981) Inner arm dyneins from the flagella of Chlamydomonas reinhardtii. Cell 27:331–340.PubMedCrossRefGoogle Scholar
  48. 48.
    Piperno, G., B. Huang, and D.J.L. Luck (1977) Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci., USA 74:1600–1604.PubMedCrossRefGoogle Scholar
  49. 49.
    Piperno, G., B. Huang, Z. Ramanis, and D.J.L. Luck (1981) Radial spokes of Chlamydomonas flagella: Polypeptide composition and phosphorylation of stalk components. J. Cell Biol. 88:73–79.PubMedCrossRefGoogle Scholar
  50. 50.
    Ramanis, Z., and D.J.L. Luck (1986) Loci affecting flagellar assembly and function map to an unusual linkage group in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci., USA 83:423–426.PubMedCrossRefGoogle Scholar
  51. 51.
    Randall, J.T., and C. Disbrey (1965) Evidence for the presence of DNA at basal body sites in Tetrahymena. Proc. Royal Soc. London B 162:473–491.CrossRefGoogle Scholar
  52. 52.
    Randall, J., and D. Starling (1971) Genetic determinants of flagellum phenotype in Chlamydomonas reinhardtii. In Edinburgh Symposium on the Genetics of the Spermatozoon, R.A. Beatty and S. Gluecksohn-Waelsch, eds. Bogrykkeriet Forum, Copenhagen.Google Scholar
  53. 53.
    Rosenbaum, J.L., J.E. Moulder, and D.L. Ringo (1969) Flagella elongation and shortening in Chlamydomonas: The use of cycloheximide and colchicine to study synthesis and assembly of flagellar proteins. J. Cell Biol. 41:600–619.PubMedCrossRefGoogle Scholar
  54. 54.
    Sagan, L. (1967) On the origin of mitosing cells. J. Theoret. Biol. 14:225–274.CrossRefGoogle Scholar
  55. 55.
    Sager, R. (1954) Mendelian and nonMendelian inheritance of streptomycin resistance in Chlamydomonas. Proc. Natl. Acad. Sci., USA 40:356–362.PubMedCrossRefGoogle Scholar
  56. 56.
    Seaman, G.R. (1960) Large scale isolation of kinetosomes from Tetrahymena. Exp. Cell Res. 21:292–302.PubMedCrossRefGoogle Scholar
  57. 57.
    Segal, R.A., B. Huang, Z. Ramanis, and D.J.L. Luck (1984) Mutant strains of Chlamydomonas reinhardtii that move backwards only. J. Cell Biol. 98:2026–2034.PubMedCrossRefGoogle Scholar
  58. 58.
    Smith-Sonneborn, J., and W. Plaut (1967) Evidence for the presence of DNA in the pellicle of Paramecium. J. Cell Sci. 2:225–234.PubMedGoogle Scholar
  59. 59.
    Snell, W.J., W.L. Dentier, L.T. Haimo, L.I. Binder, and J.L. Rosenbaum (1974) Chlamydomonas reinhardtii. Science 185:357–360.PubMedCrossRefGoogle Scholar
  60. 60.
    Stahl, F., and C. Steinberg (1964) The theory of formal phage genetics for circular maps. Genetics 50:531–560.PubMedGoogle Scholar
  61. 61.
    Starling, D., and J. Randall (1971) The flagella of temporary dikary-ons of Chlamydomonas reinhardtii. Genet. Res. Camb. 18:107–113.CrossRefGoogle Scholar
  62. 62.
    Storms, R., and P.J. Hastings (1977) A fine structure analysis of meiotic pairing in Chlamydomonas reinhardtii. Exp. Cell Res. 104:34–46.CrossRefGoogle Scholar
  63. 63.
    Strathern, J.N., C.S. Newlon, I. Herskowitz, and J.B. Hicks (1979) Isolation of a circular derivative of yeast chromosome III: Implication for the mechanism of mating-type interconversion. Cell 18:309–319.PubMedCrossRefGoogle Scholar
  64. 64.
    Streisinger, G., R.S. Edgar, and G.H. Denhardt (1964) Chromosome structure in phage T4. I. Circularity of the linkage map. Proc. Natl. Acad. Sci., USA 51:775–780.PubMedCrossRefGoogle Scholar
  65. 65.
    Szostak, J.W., and E.H. Blackburn (1982) Cloning yeast telomeres on linear plasmid vectors. Cell 29:245–255.PubMedCrossRefGoogle Scholar
  66. 66.
    Witman, G.B., J. Plummer, and G. Sander (1978) Chlamydomonas flagellar mutants lacking radial spokes and central tubules. J. Cell Biol. 76:729–747.PubMedCrossRefGoogle Scholar
  67. 67.
    Wright, R.L., J. Salisbury, and J.W. Jarvick (1985) Nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J. Cell Biol. 101:1903–1912.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Susan K. Dutcher
    • 1
  1. 1.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations