Advertisement

Mitochondrial Introns as Mobile Genetic Elements: the Role of Intron-Encoded Proteins

  • B. Dujon
  • L. Colleaux
  • A. Jacquier
  • F. Michel
  • C. Monteilhet
Part of the Basic Life Sciences book series (BLSC, volume 40)

Abstract

Introns of organelle genes share distinctive RNA secondary structures that allow their classification into two known families. These structures are believed to play an essential role in splicing, and members of both structural classes have recently been shown to perform self-splicing reactions in vitro. In lower eukaryotes, many structured introns also contain long internal open reading frames (ORFs), which are able to code for hydrophilic proteins.

Several properties of self-splicing structured introns suggest that they resemble mobile genetic elements, even though no actual transposition event involving these introns has yet been found. We report here on the characterization of two intron-encoded proteins that strongly support this attractive idea. First, we show that the class I intron of the 21S ribo-somal RNA (rRNA) gene of Saccharomyces cerevisiae omega strains (r1 intron) encodes a specific transposase. This protein has been partially purified from Escherichia coli cells that overexpress it from an artificial universal code equivalent to the rl intronic ORF. The omega transposase shows a double-strand endonuclease activity in vitro. This activity creates a 4-bp staggered cut with 3′ OH overhangs within a specific sequence of the 21S rRNA gene of omega strains. It is precisely within this sequence that the rl intron inserts by a duplicative transposition. Second, we report on the synthesis, in E. coli, of a putative reverse transcriptase encoded by the class II intron of the cytochrome b gene of Schizosaccharomyces pombe. This synthesis was obtained from E. coli expression vectors, using the class II intronic ORF linked to an artificial initiator sequence.

As further support of the idea that structured introns are mobile, we show, from a systematic screening of introns in various yeast species, that the r1 intron has transposed into the ATPase subunit 9 gene of Kluyveromyces fragilis. Structural features observed at the new intron homing site may be relevant to the transposition event.

Keywords

Mobile Genetic Element ATPase Subunit Structure Intron Mitochondrial Intron Duplicative Transposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amberg, A.C., G. Van der Horst, and H.F. Tabak (1986) Formation of lariats and circles in self-splicing of the precursor to the large ribosomal RNA of yeast mitochondria. Cell 44:235–242.CrossRefGoogle Scholar
  2. 2.
    Bonitz, S.G., G. Coruzzi, B.E. Thalenfeld, A. Tzagoloff, and G. Macino (1980) Assembly of the mitochondrial membrane system: Structure and nucleotide sequence of the gene coding for subunit I of yeast apocyto-chrome oxidase. J. Biol. Chem. 255:11927–11941.PubMedGoogle Scholar
  3. 3.
    Brosius, J. (1984) Toxicity of an overproduced foreign gene product in Escherichia coli and its use in plasmid vectors for the selection of transcription terminators. Gene 27:161–172.PubMedCrossRefGoogle Scholar
  4. 4.
    Burger, G., and S. Werner (1985) The mitochondrial URF.1 gene in Neurospora crassa has an intron that contains a novel type of URF. J. Mol. Biol. 186:231–242.PubMedCrossRefGoogle Scholar
  5. 5.
    Burke, J.M., and U.L. RajBhandary (1982) Intron within the large rRNA gene of N. crassa mitochondria: A long open reading frame and a conserved sequence possibly important in splicing. Cell 31:509–520.PubMedCrossRefGoogle Scholar
  6. 6.
    Carignani, G., O. Groudinsky, D. Frezza, E. Schiavon, E. Bergantino, and P.P. Slonimski (1983) An mRNA maturase is encoded by the first intron of the gene for the subunit I of the cytochrome oxidase in S. cerevisiae. Cell 35:733–742.PubMedCrossRefGoogle Scholar
  7. 7.
    Cech, T.R. (1986) The generality of self-splicing RNA: Relationship to nuclear RNA splicing. Cell 44:207–210.PubMedCrossRefGoogle Scholar
  8. 8.
    Church, G., and W. Gilbert (1980) Yeast mitochondrial intron products required in trans for RNA splicing. In Mobilization and Reassembly of Genetic Information, D.R. Joseph, J. Schultz, W.A. Scott, and R. Werner, eds. Academic Press, Inc., New York, pp. 379–395.Google Scholar
  9. 9.
    Colleaux, L., L. d’Auriol, M. Betermier, G. Cottarel, A. Jacquier, F. Galibert, and B. Dujon (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44:521–533.PubMedCrossRefGoogle Scholar
  10. 10.
    Davies, R.W., R.B. Waring, J.A. Ray, T.A. Brown, and C. Scazzochio (1982) Making ends meet: A model for RNA splicing in fungal mitochondria. Nature 300:719–724.PubMedCrossRefGoogle Scholar
  11. 11.
    Dujon, B. (1980) Sequence of the intron and flanking exons of the mitochondrial 2IS rRNA gene of yeast strains having different alleles at the omega and ribl loci. Cell 20:185–197.PubMedCrossRefGoogle Scholar
  12. 12.
    Dujon, B., and A. Jacquier (1983) Organization of the mitochondrial 21S rRNA gene in Saccharomyces cerevisiae: Mutants of the peptidyl transferase centre and nature of the omega locus. In Mitochondria 1983, R.J. Schweyen, K. Wolf, and F. Kaudewitz, eds. W. de Gruyter and Co., Berlin, New York, pp. 389–403.Google Scholar
  13. 13.
    Dujon, B., M. Bolotin-Fukuhara, D. Coen, J. Deutsch, P. Netter, P.P. Slonimski, and L. Weill (1976) Mitochondrial genetics. XI. Mutations at the mitochondrial locus omega affecting the recombination of mitochondrial genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 143: 131–165.PubMedCrossRefGoogle Scholar
  14. 14.
    Dujon, B., G. Cottarel, L. Colleaux, M. Betermier, A. Jacquier, L. d’Auriol, and F. Galibert (1985) Mechanism of integration of an intron within a mitochondrial gene: A double strand break and the trans-posase function of an intron encoded protein as revealed by in vivo and in vitro assays. In Achievements and Perspectives in Mitochondrial Research, F. Palmieri, ed. Elsevier, Amsterdam, pp. 215–225.Google Scholar
  15. 15.
    Garriga, G., and A.M. Lambowitz (1984) RNA splicing in Neurospora mitochondria: Self-splicing of a mitochondrial intron in vitro. Cell 38:631–641.CrossRefGoogle Scholar
  16. 16.
    Hensgens, L.A.M., L.A. Grivell, P. Borst, and J.L. Bos (1979) Nucleotide sequence of the mitochondrial structural gene for subunit 9 of yeast ATPase complex. Proc. Natl. Acad. Sci., USA 76:1663–1667.PubMedCrossRefGoogle Scholar
  17. 17.
    Hensgens, L.A.M., L. Bonen, M. de Haan, G. Van der Horst, and L.A. Grivell (1983) Two intron sequences in yeast mitochondrial COXI gene: Homology among URF-containing introns and strain-dependent variation in flanking exons. Cell 32:379–389.PubMedCrossRefGoogle Scholar
  18. 18.
    Jacquier, A., and B. Dujon (1983) The intron of the mitochondrial 21S rRNA gene: Distribution in different yeast species and sequence comparison between Kluyveromyces thermotolerans and Saccharomyces cerevisiae. Mol. Gen. Genet. 192:487–499.PubMedCrossRefGoogle Scholar
  19. 19.
    Jacquier, A., and B. Dujon (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394.PubMedCrossRefGoogle Scholar
  20. 20.
    Kostriken, R., J.N. Strathern, A.J.S. Klar, J.B. Hicks, and F. Heffron (1983) A site specific endonuclease essential for mating type switching of Saccharomyces cerevisiae. Cell 35:165–174.CrossRefGoogle Scholar
  21. 21.
    Kruger, K., P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling, and T. Cech (1982) Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157.PubMedCrossRefGoogle Scholar
  22. 22.
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.PubMedCrossRefGoogle Scholar
  23. 23.
    Lang, B.F., F. Ahne, and L. Bonen (1985) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe: The cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae coxl gene. J. Mol. Biol. 184:353–366.PubMedCrossRefGoogle Scholar
  24. 24.
    Lazowska, J., C. Jacq, and P.P. Slonimski (1980) Sequence of introns and flanking exons in wild type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 22:333–348.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, L.F. (1983) DNA topoisomerases: Enzymes that catalyse the breaking and rejoining of DNA. Crit. Rev. Biochem. 15:1–24.CrossRefGoogle Scholar
  26. 26.
    Macino, G., and A. Tzagoloff (1979) The assembly of the mitochondrial membrane system: The DNA sequence of a mitochondrial ATPase gene in Saccharomyces cerevisiae. J. Biol. Chem. 254:4617–4623.PubMedGoogle Scholar
  27. 27.
    Macreadie, I.G., R.M. Scott, A.R. Zinn, and R.A. Butow (1985) Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41:395–402.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsura, E.T., J.M. Domenico, and D.J. Cummings (1986) Curr. Genet. (in press).Google Scholar
  29. 29.
    Maxam, A.M., and W. Gilbert (1980) Sequencing end-labeled DNA with base specific chemical cleavages. In Methods in Enzymology, Vol. 65, L. Grossman and K. Moldave, eds. Academic Press, Inc., New York, pp. 499–560.Google Scholar
  30. 30.
    Michel, F.N., and D.J. Cummings (1985) Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr. Genet. 10:69–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Michel, F., and B. Dujon (1983) Conservation of RNA secondary structures in two intron families including mitochondrial, chloroplast and nuclear encoded members. EMBO J. 2:33–37.PubMedGoogle Scholar
  32. 32.
    Michel, F., and B.F. Lang (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316:641–643.PubMedCrossRefGoogle Scholar
  33. 33.
    Michel, F., A. Jacquier, and B. Dujon (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881.PubMedCrossRefGoogle Scholar
  34. 34.
    Nargang, F.E., L.L. Bell, A.M. Stohl, and A.M. Lambowitz (1984) The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38:441–453.PubMedCrossRefGoogle Scholar
  35. 35.
    Osiewacz, H.D., and K. Esser (1984) The mitochondrial plasmid of Podospora anserina: A mobile intron of a mitochondrial gene. Curr. Genet. 8:299–305.CrossRefGoogle Scholar
  36. 36.
    Padgett, R.A., M.M. Konarska, P.J. Grabowski, S.F. Hardy, and P.A. Sharp (1984) Lariats RNA intermediates and products in the splicing of messenger RNA precursors. Science 225:898–903.PubMedCrossRefGoogle Scholar
  37. 37.
    Peebles, C.L., P.S. Perlman, K.L. Mecklenburg, M.L. Petrillo, J.H. Tabor, K.A. Jarrell, and H.L. Cheng (1986) A self-splicing RNA excises an intron lariat. Cell 44:213–223.PubMedCrossRefGoogle Scholar
  38. 38.
    Ruskin, B., A.R. Krainer, T. Maniatis, and M.R. Green (1984) Excision of an intact intron as a novel lariat structure during mRNA splicing in vitro. Cell 38:317–331.PubMedCrossRefGoogle Scholar
  39. 39.
    Sancar, A., A.M. Hack, and W.D. Rupp (1979) Simple method for identification of plasmid-coded protein. J. Bacteriol. 137:692–693.PubMedGoogle Scholar
  40. 40.
    Shapiro, J. (1983) Mobile Genetic Elements, Academic Press, Inc., New York.Google Scholar
  41. 41.
    Tabak, H.F., G. Van der Horst, K.A. Osinga, and A.C. Arnberg (1984) Splicing of large ribosomal precursor RNA and processing of intron RNA in yeast mitochondria. Cell 39:623–629.PubMedCrossRefGoogle Scholar
  42. 42.
    Van der Horst, G., and H.F. Tabak (1985) Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors. Cell 40:759–766.PubMedCrossRefGoogle Scholar
  43. 43.
    Van der Veen, R., A.C. Arnberg, G. Van der Horst, L. Bonen, H.F. Tabak, and L.A. Grivell (1986) Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 44:225–234.PubMedCrossRefGoogle Scholar
  44. 44.
    Waring, R.B., and R.W. Davies (1984) Assessment of a model for intron RNA secondary structure relevant to RNA self splicing: A review. Gene 28:277–291.PubMedCrossRefGoogle Scholar
  45. 45.
    Zaug, A.J., and T.R. Cech (1982) The intervening sequence excised from the ribosomal RNA precursor of Tetrahymena contains a 5′ terminal guanosine residue not encoded by the DNA. Nucl. Acids Res. 10:2823–2838.PubMedCrossRefGoogle Scholar
  46. 46.
    Zinn, A.R., and R.A. Butow (1985) Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: Kinetics and involvement of a double-strand break. Cell 40:887–895.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • B. Dujon
    • 1
  • L. Colleaux
    • 1
  • A. Jacquier
    • 1
  • F. Michel
    • 1
  • C. Monteilhet
    • 1
  1. 1.Centre de Génétique MoléculaireCentre National de la Recherche ScientifiqueGif-sur-YvetteFrance

Personalised recommendations