The Replication of Double-Stranded RNA

  • Anita M. Newman
  • Calvin S. McLaughlin
Part of the Basic Life Sciences book series (BLSC, volume 40)


A wide variety of fungi harbor virus-like particles (VLPs), approximately 40 nm in diameter, that contain double-stranded RNA (dsRNA) genomes (10). In some ways, these dsRNA genomes are more similar to plasmids than to true viruses. They are noninfectious and are transferred between cells only under conditions of cytoplasmic mixing, such as occurs in mating or other natural or artificial means of cell fusion (10,42). The particles are stably maintained by vertical transmission at levels that are characteristic of the growth conditions of the culture (10,30) or the particular strain in question (30). Although the virus-like nature of the particles derives from their possession of a protein coat, this coat does possess a transcriptase activity (8,19,47,48), presumably a necessary function for the replication of a dsRNA genome in a previously uninfected cell.


Hybrid Material Single Strand Yeast Killer dsRNA Molecule dsRNA Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bevan, E.A., and A.J. Herring (1976) The killer character in yeast: Preliminary studies of virus-like particle replication. In Genetics, Biogenesis, and Bioenergetics of Mitochondria, W. Bandlow, R.J. Schweyen, D.Y. Thomas, K. Wolf, and F. Kaudewitz, eds. Walter de Gruyter, Amsterdam, The Netherlands, pp. 153–162.Google Scholar
  2. 2.
    Bevan, E.A., and D.J. Mitchell (1979) Viruses and Plasmids in Fungi, P.A. Lemke, ed. Marcel Dekker, New York and Basel, pp. 94–160.Google Scholar
  3. 3.
    Bevan, E.A., A.J. Herring, and D.J. Mitchell (1973) Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature (London) 245:81–86.CrossRefGoogle Scholar
  4. 4.
    Blumenthal, T., and G.G. Carmichael (1979) RNA replication: Function and structure of QG replicase. Ann. Rev. Biochem. 48:525–548.PubMedCrossRefGoogle Scholar
  5. 5.
    Bostian, K.A., J.A. Sturgeon, and D.J. Tipper (1980) Encapsidation of yeast killer double-stranded ribonucleic acids: Dependence of M on L. J. Baceriol. 143:463–470.Google Scholar
  6. 6.
    Bostian, K.A., V.E. Burn, S. Jayachandran, and D.J. Tipper (1983) Yeast killer dsRNA plasmids are transcribed in vivo to produce full and partial-length plus-stranded RNAs. Nucl. Acids Res. 11:1077–1097.PubMedCrossRefGoogle Scholar
  7. 7.
    Bostian, K.A., J.E. Hopper, D.J. Rogers, and D.J. Tipper (1980) Trans-lational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae: M-dsRNA encodes toxin. Cell 19:403–414.PubMedCrossRefGoogle Scholar
  8. 8.
    Bruenn, J., L. Bobek, V. Brennan, and W. Held (1980) Yeast viral RNA polymerase is a transcriptase. Nucl. Acids Res. 8:2985–2997.PubMedCrossRefGoogle Scholar
  9. 9.
    Buck, K.W. (1978) Semiconservative replication of double-stranded RNA by a virion-associated RNA polymerase. Biochem. Biophys. Res. Commun. 84:639–645.PubMedCrossRefGoogle Scholar
  10. 10.
    Buck, K.W. (1979) Replication of dsRNA mycoviruses. In Viruses and Plasmids in Fungi, P.A. Lempke, ed. Marcel Dekker, New York and Basel, pp. 94–151.Google Scholar
  11. 11.
    Buck, K.W., P. Lhoas, D.J. Border, and B.K. Street (1973) Virus particles in yeast. Biochem. Soc. Trans. 1:1141–1142.Google Scholar
  12. 12.
    Claire, J.J., and S.G. Oliver (1979) The regulation of RNA synthesis in yeast. IV. Synthesis of double-stranded RNA. Mol. Gen. Genet. 171:161–166.CrossRefGoogle Scholar
  13. 13.
    Cohn, M.S., C.W. Tabor, H. Tabor, and R.B. Wickner (1978) Spermidine or spermine requirement for killer double-stranded RNA plasmid replication in yeast. J. Biol. Chem. 253:5225–5227.PubMedGoogle Scholar
  14. 14.
    Diaz-Ruiz, J.R., and J.M. Kaper (1978) Isolation of viral double-stranded RNA using LiCl fractionation procedure. Biochemistry 8:1–17.Google Scholar
  15. 15.
    Esteban, R., and R.B. Wickner (1986) Three different M1 RNA-containing viruslike particle types in Saccharomyces cerevisiae: In vitro M1 double-stranded RNA synthesis. Mol. Cell. Biol. 6:1552–1561.PubMedGoogle Scholar
  16. 16.
    Fried, H.M., and G.R. Fink (1978) Electron microscopic heteroduplex analysis of “killer” double-stranded RNA species from yeast. Proc. Natl. Acad. Sci., USA 75:4224–4228.PubMedCrossRefGoogle Scholar
  17. 16a.
    Fujimura, T., R. Esteban, and R.B. Wickner (1986) In vitro L-A double-stranded RNA synthesis in virus-like particles from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 83:4433–4437.PubMedCrossRefGoogle Scholar
  18. 17.
    Harris, M.S. (1978) Virus-like particles and double stranded RNA from killer and non-killer strains of Saccharomyces cerevisiae. Microbios 21:161–176.PubMedGoogle Scholar
  19. 18.
    Herring, A.J., and E.A. Bevan (1974) Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J. Gen. Virol. 22:387–394.PubMedCrossRefGoogle Scholar
  20. 19.
    Herring, A.J., and E.A. Bevan (1977) Yeast virus-like particles possess a capsid-associated single-stranded RNA polymerase. Nature (London) 268:464–466.CrossRefGoogle Scholar
  21. 20.
    Holm, C.A., S.G. Oliver, A.M. Newman, L.E. Holland, C.S. McLaughlin, E.K. Wagner, and R.C. Warner (1978) The molecular weight of yeast P1 double-stranded RNA. J. Biol. Chem. 245:81–86.Google Scholar
  22. 21.
    Hopper, J.E., K.A. Bostian, L.B. Rowe, and D.J. Tipper (1977) Translation of the L-species dsRNA genome of the killer-associated viruslike particles of Saccharomyces cerevisiae. J. Biol. Chem. 252:9010–9017.PubMedGoogle Scholar
  23. 22.
    Huang, A.S. (1977) Viral pathogenesis and molecular biology. Bacteriol. Rev. 41:811–821.PubMedGoogle Scholar
  24. 23.
    Kadesch, T.R., and M.J. Chamberlin (1983) Studies of in vitro transcription by calf thymus RNA polymerase II using a novel duplex DNA template. J. Biol. Chem. 257:5286–5295.Google Scholar
  25. 24.
    Kane, C.M., and M.J. Chamberlin (1985) Studies on transcription of 3′-extended DNA templates by mammalian RNA polymerase II. Partial purification and characterization of a factor from HeLa cells that facilitates renaturation of the DNA template. Biochemistry 24:2254–2262.PubMedCrossRefGoogle Scholar
  26. 25.
    Leibowitz, M.J. (1983) Role of protein synthesis in the replication of killer virus in yeast. Curr. Genet. 5:161–163.CrossRefGoogle Scholar
  27. 26.
    Mead, D.J., and S.G. Oliver (1983) Purification and properties of a double-stranded ribonuclease from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 137:501–507.PubMedCrossRefGoogle Scholar
  28. 27.
    Nemeroff, M.E., and J.A. Bruenn (1986) Conservative replication and transcription of Saccharomyces cerevisiae viral double-stranded RNA in vitro. J. Virol. 57:754–758.PubMedGoogle Scholar
  29. 28.
    Newlon, C.S., T.D. Petes, L.M. Hereford, and W.L. Fangman (1974) Replication of yeast chromosome RNA. Nature 247:32–35.PubMedCrossRefGoogle Scholar
  30. 29.
    Newman, A.M., S.G. Elliot, C.S. McLaughlin, P.A. Sutherland, and R.C Warner (1981) Replication of double-stranded RNA of the virus-like particles in Saccharomyces cerevisiae. J. Virol. 38:263–271.PubMedGoogle Scholar
  31. 30.
    Oliver, S.G., S.J. McCready, C. Holm, P.A. Sutherland, C.S. McLaughlin, and B.S. Cox (1977) Biochemical and physiological studies of the yeast virus-like particle. J. Bacteriol. 130:1303–1309.PubMedGoogle Scholar
  32. 31.
    Ratti, C., and K.W. Buck (1978) Semi-conservative transcription in particles of double-stranded RNA mycovirus. Nucl. Acids Res. 10:3843–3854.CrossRefGoogle Scholar
  33. 32.
    Ridley, S.P., and R.B. Wickner (1983) Defective interference in the killer system of Saccharomyces cerevisiae. J. Virol. 45:800–812.PubMedGoogle Scholar
  34. 33.
    Schonberg, M., S.C. Silverstein, D.H. Levin, and G. Acs (1971) Asynchronous synthesis of the complementary strands of the reovirus genome. Proc. Natl. Acad. Sci., USA 68:505–508.PubMedCrossRefGoogle Scholar
  35. 34.
    Sclafani, R.A., and W.L. Fangman (1984) Conservative replication of double-stranded RNA in Saccharomyces cerevisiae by displacement of progeny single strands. Mol. Cell. Biol. 4:1618–1626.PubMedGoogle Scholar
  36. 35.
    Shalitin, C., and I. Weiser (1977) Killer double-stranded ribonucleic acid synthesis in cell division cycle mutants of Saccharomyces cerevisiae. J. Bacteriol. 131:735–740.PubMedGoogle Scholar
  37. 36.
    Silverstein, S.C., J.K. Christman, and G. Acs (1976) The reovirus rep-licative cycle. Ann. Rev. Biochem. 45:375–408.PubMedCrossRefGoogle Scholar
  38. 37.
    Somers, J.M. (1973) Isolation of suppressive mutants from killer and neutral strains of Saccharomyces cerevisiae. Genetics 74:571–579.PubMedGoogle Scholar
  39. 38.
    Sommer, S.S., and R.B. Wickner (1982) Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that Ml requires L. J. Bacteriol. 150:545–551.PubMedGoogle Scholar
  40. 39.
    Sommer, S.S., and R.B. Wickner (1982) Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these RNAs. Cell 31:429–441.PubMedCrossRefGoogle Scholar
  41. 40.
    Thiele, D.J., E.M. Hannig, and M.J. Leibowitz (1984) Genome structure and expression of a defective interfering mutant of the killer virus of yeast. Virology 137:20–31.PubMedCrossRefGoogle Scholar
  42. 41.
    Thrash, C., K. Voelkel, S. DiNardo, and R. Sternglanz (1984) Identification of Saccharomyces cerevisiae mutants deficient in DNA topo-isomerase I activity. J. Biol. Chem. 259:1375–1377.PubMedGoogle Scholar
  43. 42.
    Tipper, D.J., and K.A. Bostian (1984) Double-stranded ribonucleic acid killer systems in yeasts. Microbiol. Rev. 48:125–156.PubMedGoogle Scholar
  44. 43.
    Toh-e, A., and R.B. Wickner (1980) “Superkiller” mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces. Proc. Natl. Acad. Sci., USA 77:527–530.PubMedCrossRefGoogle Scholar
  45. 44.
    Tyagi, A.K., R.B. Wickner, CW. Tabor, and H. Tabor (1984) Specificity of polyamine requirements for the replication and maintenance of different double-stranded RNA plasmids in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 81:1149–1153.PubMedCrossRefGoogle Scholar
  46. 45.
    Van Etten, J.L., D.E. Burbank, D.A. Cuppels, L.C. Lane, and J. Vidaver (1980) Semiconservative synthesis of single-stranded RNA by bacteriophage ϕ6 RNA polymerase. J. Virol. 33:769–773.PubMedGoogle Scholar
  47. 46.
    Vodkin, M., F. Katterman, and G.R. Fink (1974) Yeast killer mutants with altered double-stranded ribonucleic acid. J. Bacteriol. 117:681–686.PubMedGoogle Scholar
  48. 47.
    Welsh, D., and M.J. Leibowitz (1980) Transcription of killer virion double-stranded RNA in vitro. Nucl. Acids Res. 8:2365–2375.PubMedCrossRefGoogle Scholar
  49. 48.
    Welsh, J.D., M.J. Leibowitz, and R.B. Wickner (1980) Virion DNA-independent RNA polymerase from Saccharomyces cerevisiae. Nucl. Acids Res. 8:2349–2363.PubMedCrossRefGoogle Scholar
  50. 49.
    Wickner, R.B. (1979) The killer double-stranded RNA plasmids of yeast. Plasmid 2:303–322.PubMedCrossRefGoogle Scholar
  51. 50.
    Wickner, R.B. (1980) Plasmids controlled exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell 21:217–226.PubMedCrossRefGoogle Scholar
  52. 51.
    Wickner, R.B. (1981) Killer systems in Saccharomyces cerevisiae. In Molecular Biology of the Yeast Saccharomyces cerevisiae: Life Cycle and Inheritance, J.N. Strathern, E.W. Jones, and J.R. Broach, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 415–444.Google Scholar
  53. 52.
    Wickner, R.B. (1983) Genetic control of replication of the double-stranded RNA segments of the killer systems in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 222:1–11.PubMedCrossRefGoogle Scholar
  54. 53.
    Wickner, R.B. (1983) Killer systems in Saccharomyces cerevisiae: Three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, Ml, L-A-E, and L-A-HN. Mol. Cell. Biol. 3:654–661.PubMedGoogle Scholar
  55. 54.
    Wickner, R.B., and M.J. Leibowitz (1977) mak mutants of yeast: Mapping and characterization. J. Bacteriol. 140:154–160.Google Scholar
  56. 55.
    Wickner, R.B., S.P. Ridley, H.M. Fried, and S.G. Ball (1982) Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 79:4706–4708.PubMedCrossRefGoogle Scholar
  57. 56.
    Williamson, D.H., and D.J. Fennell (1974) Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Mol. Gen. Genet. 131:193–207.PubMedCrossRefGoogle Scholar
  58. 57.
    Zakian, V.A., B.J. Brewer, and W.L. Fangman (1979) Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 17:923–934.PubMedCrossRefGoogle Scholar
  59. 58.
    Zakian, V.A., D.W. Wagner, and W.L. Fangman (1981) Yeast L double-stranded ribonucleic acid is synthesized during the Gl phase but not the S phase of the cell cycle. Mol. Cell. Biol. 1:673–679.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Anita M. Newman
    • 1
  • Calvin S. McLaughlin
    • 1
  1. 1.Department of Biological Chemistry, California College of MedicineUniversity of CaliforniaIrvineUSA

Personalised recommendations