Overview of Double-Stranded RNA Replication In Saccharomyces Cerevisiae

  • Reed B. Wickner
  • Tsutomu Fujimura
  • Rosa Esteban
Part of the Basic Life Sciences book series (BLSC, volume 40)


There are five families of double-stranded RNA (dsRNA) in strains of Saccharomyces cerevisiae, called L-A, L-BC, M, T, and W. Of these, L-A, L-BC, and M are found in intracellular virus-like particles (VLPs). Their replication is controlled by over 40 chromosomal genes; some (called MAK genes) promote dsRNA replication or maintenance, others (called SKI genes) negatively control dsRNA replication. Extensive genetic interactions among the dsRNAs and the chromosomal genes are known. The VLPs containing dsRNA produce a message (+) strand RNA copy in vitro, while the VLPs containing a (+) strand synthesize a (-) strand copy to make dsRNA. The genes MAK10 and PET18 (= MAK31 + MAK32) are necessary for the structural stability of L-A dsRNA-containing particles, but not of those containing L-A (+) strand RNA. The M1 VLPs can have either one or two M1 dsRNA molecules per particle, a fact that we explain by a sort of “head-full” hypothesis. [D] (for disease) is a new cytoplasmic genetic element which, when introduced into a ski M1 strain, makes the strain unable to grow at 20°C or at 37°C. [D] is not located on L-A, L-BC, M, or W dsRNA. Element [D] is heat-curable, and chromosomal mutants unable to maintain [D] (mad ) have been isolated. They can maintain M1 and L-A. [B] is a cytoplasmic genetic element which suppresses the usual need of M1 for MAK11 and several other MAK genes. Element [B] is not located on L-A or M and is distinct from [D].


Saccharomyces Cerevisiae Chromosomal Gene Killer Toxin CsCl Gradient dsRNA Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball, S.G., C. Tirtiaux, and R.B. Wickner (1984) Genetic control of L-A and L-(BC) dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics 107:199–217.PubMedGoogle Scholar
  2. 2.
    Bevan, E.A., A.J. Herring, and D.J. Mitchell (1973) Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature 245:81–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Bostian, K.A., J.E. Hopper, D.T. Rogers, and D.J. Tipper (1980) Trans-lational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae: M dsRNA encodes toxin. Cell 19:403–414.PubMedCrossRefGoogle Scholar
  4. 4.
    Bostian, K.A., Q. Elliott, H. Bussey, V. Burn, A. Smith, and D.J. Tipper (1984) Sequence of the preprotoxin dsRNA gene of type 1 killer yeast: Multiple processing events produce a two-component toxin. Cell 36:741–751.PubMedCrossRefGoogle Scholar
  5. 5.
    Bruenn, J., L. Bobek, J. Brennan, and W. Held (1980) Yeast viral RNA polymerase is a transcriptase. Nucl. Acids Res. 8:2985–2997.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohn, M.S., C.W. Tabor, H. Tabor, and R.B. Wickner (1978) Spermidine or spermine requirement for killer double-stranded RNA plasmid replication in yeast. J. Biol. Chem. 253:5225–5227.PubMedGoogle Scholar
  7. 7.
    El-Sherbeini, M., D.J. Tipper, D.J. Mitchell, and K.A. Bostian (1984) Virus-like particle capsid proteins encoded by different L dsRNAs in Saccharomyces cerevisiae: Their roles in maintenance of M dsRNA killer plasmids. Mol. Cell. Biol. 4:2818–2827.PubMedGoogle Scholar
  8. 8.
    Esteban, R., and R.B. Wickner (1986) Three different M1 RNA-containing virus-like particle types in Saccharomyces cerevisiae: In vitro M1 double-stranded RNA synthesis. Mol. Cell. Biol. (in press).Google Scholar
  9. 9.
    Fujimura, T., and R.B. Wickner (1986) Thermolabile L-A virus-like particles from pet18 mutants of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:404–410.PubMedGoogle Scholar
  10. 10.
    Fujimura, T., R. Esteban, and R.B. Wickner (1986) In vitro L-A double-stranded RNA synthesis in virus-like particles from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA (in press).Google Scholar
  11. 11.
    Hannig, E., and M.J. Leibowitz (1985) Structure and expression of the M2 genomic segment of a type 2 killer virus of yeast. Nucl. Acids Res. 13:4379–4400.PubMedCrossRefGoogle Scholar
  12. 12.
    Hannig, E.M., M.J. Leibowitz, and R.B. Wickner (1985) On the mechanism of exclusion of M2 double-stranded RNA by L-A-E double-stranded RNA in Saccharomyces cerevisiae. Yeast 1:57–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Herring, A.J., and E.A. Bevan (1977) Yeast virus-like particles possess a capsid-associated single-stranded RNA polymerase. Nature 268: 464–466.PubMedCrossRefGoogle Scholar
  14. 14.
    Hopper, J., K.A. Bostian, L.B. Rowe, and D.J. Tipper (1977) Translation of the L species dsRNA genome of the killer-associated virus-like particles of Saccharomyces cerevisiae. J. Biol. Chem. 252:9010–9017.PubMedGoogle Scholar
  15. 15.
    Julius, D., A. Brake, L. Blair, R. Kunisawa, and J. Thorner (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor. Cell 37:1075–1089.PubMedCrossRefGoogle Scholar
  16. 16.
    Leibowitz, M.J., and R.B. Wickner (1976) A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 73:2061–2065.PubMedCrossRefGoogle Scholar
  17. 17.
    Newman, A.M., S.G. Elliott, C.S. McLaughlin, P.A. Sutherland, and R.C. Warner (1981) Replication of dsRNA of the virus-like particles in Saccharomyces cerevisiae. J. Virol. 38:263–271.PubMedGoogle Scholar
  18. 18.
    Ridley, S.P., S.S. Sommer, and R.B. Wickner (1984) Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 4:761–770.PubMedGoogle Scholar
  19. 19.
    Sclafani, R.A., and W.L. Fangman (1984) Conservative replication of dsRNA in Saccharomyces cerevisiae by displacement of progeny single strands. Mol. Cell. Biol. 4:1618–1626.PubMedGoogle Scholar
  20. 20.
    Skipper, N., D.Y. Thomas, and P.C.K. Lau (1984) Cloning and sequencing of the preprotoxin-coding region of the yeast M1 double-stranded RNA. EMBO J. 3:107–111.PubMedGoogle Scholar
  21. 21.
    Sommer, S.S., and R.B. Wickner (1982) Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M 1 requires L. J. Bacteriol. 150:545–551.PubMedGoogle Scholar
  22. 22.
    Sommer, S.S., and R.B. Wickner (1982) Yeast L dsRNA consists of at least three distinct RNAs: Evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell 31:429–441.PubMedCrossRefGoogle Scholar
  23. 23.
    Sommer, S.S., and R.B. Wickner (1984) Double-stranded RNAs that encode killer toxins in Saccharomyces cerevisiae: Unstable size of M1 double-stranded RNA and inhibition of M2 replication by M1. Mol. Cell. Biol. 4:1747–1753.PubMedGoogle Scholar
  24. 24.
    Thiele, D.J., E.M. Hannig, and M.J. Leibowitz (1984) Genome structure and expression of a defective interfering mutant of the killer virus of yeast. Virology 137:20–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Tipper, D.J., and K.A. Bostian (1984) Double-stranded RNA killer systems in yeast. Microbiol. Rev. 48:125–156.PubMedGoogle Scholar
  26. 26.
    Thrash, C., K. Voelkel, S. Di Nardo, and R. Sternglanz (1984) Identification of Saccharomyces cerevisiae mutants deficient in DNA topo-isomerase I activity. J. Biol. Chem. 259:1375–1377.PubMedGoogle Scholar
  27. 27.
    Toh-e, A., and Y. Sahashi (1985) The PET18 locus of Saccharomyces cerevisiae: A complex locus containing multiple genes. Yeast 1:159–172.PubMedCrossRefGoogle Scholar
  28. 28.
    Toh-e, A., and R.B. Wickner (1980) “Superkiller” mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 77:527–530.PubMedCrossRefGoogle Scholar
  29. 29.
    Toh-e, A., P. Guerry, and R.B. Wickner (1978) Chromosomal superkiller mutants of Saccharomyces cerevisiae. J. Bacteriol. 136:1002–1007.PubMedGoogle Scholar
  30. 30.
    Vernet, T., C. Boone, D. Greene, D.Y. Thomas, and H. Bussey (1986) Yeast killer toxin: Site-directed mutations affecting toxin and immunity domains of the precursor gene. In Natural Antimicrobial Systems Symposium, R.G. Board, ed. Bath University Press, Bath, England (in press).Google Scholar
  31. 31.
    Vodkin, M., F. Katterman, and G.R. Fink (1974) Yeast killer mutants with altered dsRNA. J. Bacteriol. 117:681–688.PubMedGoogle Scholar
  32. 32.
    Welsh, D.J., and M.J. Leibowitz (1980) Transcription of killer virion double-stranded RNA in vitro. Nucl. Acids Res. 8:2365–2375.PubMedCrossRefGoogle Scholar
  33. 33.
    Welsh, D.J., and M.J. Leibowitz (1982) Localization of genes on the dsRNA killer virus of yeast. Proc. Natl. Acad. Sci., USA 79:786–789.PubMedCrossRefGoogle Scholar
  34. 34.
    Welsh, D.J., M.J. Leibowitz, and R.B. Wickner (1980) Virion DNA-independent RNA polymerase from Saccharomyces cerevisiae. Nucl. Acids Res. 8:2349–2363.PubMedCrossRefGoogle Scholar
  35. 35.
    Wesolowski, M., and R.B. Wickner (1984) Two new double-stranded RNA molecules showing non-Mendelian inheritance and heat inducibility in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:181–187.PubMedGoogle Scholar
  36. 36.
    Wickner, R.B. (1978) Twenty-six chromosomal genes needed to maintain the killer double-stranded RNA plasmid of Saccharomyces cerevisiae. Genetics 88:419–425.PubMedGoogle Scholar
  37. 37.
    Wickner, R.B. (1979) Mapping of chromosomal genes of Saccharomyces cerevisiae using an improved genetic mapping method. Genetics 92:803–821.PubMedGoogle Scholar
  38. 38.
    Wickner, R.B. (1980) Plasmids controlling exclusion of the K2 killer double-stranded RNA of yeast. Cell 21:217–226.PubMedCrossRefGoogle Scholar
  39. 39.
    Wickner, R.B. (1983) Killer systems in Saccharomyces cerevisiae: Three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, M, L-A-E, and L-A-HN. Mol. Cell. Biol. 3:654–661.PubMedGoogle Scholar
  40. 40.
    Wickner, R.B. (1986) Double-stranded RNA replication in yeast: The killer system. Ann. Rev. Biochem. 55:373–395.PubMedCrossRefGoogle Scholar
  41. 41.
    Wickner, R.B., and M.J. Leibowitz (1976) Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: The killer character of yeast. J. Mol. Biol. 105:427–443.PubMedCrossRefGoogle Scholar
  42. 42.
    Wickner, R.B., and M.J. Leibowitz (1977) Dominant chromosomal mutation bypassing chromosomal genes needed for killer RNA plasmid replication in yeast. Genetics 87:453–469.PubMedGoogle Scholar
  43. 43.
    Wickner, R.B., and M.J. Leibowitz (1979) mak mutants of yeast: Mapping and characterization. J. Bacteriol. 140:154–160.PubMedGoogle Scholar
  44. 44.
    Wickner, R.B., and A. Toh-e (1982) [HOK], a new yeast non-Mendelian trait, enables a replication-defective killer plasmid to be maintained. Genetics 100:159–174.PubMedGoogle Scholar
  45. 45.
    Wickner, R.B., S.P. Ridley, H.M. Fried, and S.G. Ball (1982) Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 79:4706–4708.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Reed B. Wickner
    • 1
  • Tsutomu Fujimura
    • 1
  • Rosa Esteban
    • 1
  1. 1.Section on Genetics of Simple Eukaryotes, Laboratory of Biochemical PharmacologyNational Institute of Arthritis, Diabetes, and Digestive and Kidney DiseasesBethesdaUSA

Personalised recommendations