Mitochondrial Excision-Amplification Plasmids in Senescent and Long-Lived Cultures of Podospora Anserina

  • Donald J. Cummings
  • Mitchell S. Turker
  • Joanne M. Domenico
Part of the Basic Life Sciences book series (BLSC, volume 40)


Senescence in the filamentous fungus Podospora anserina is maternally inherited. Several laboratories, including our own, have shown that specific regions of the mitochondrial genome excise and replicate as autonomous plasmids during senescence. One particular plasmid, termed α senDNA, is found most often, but others (β, ε, and θ senDNAs) are also observed. DNA sequence analysis has shown that the 2.6-kbp α senDNA is a complete group II intron of the cytochrome oxidase subunit I (COI) gene. Like other group II introns, α senDNA codes for amino acid sequences that have considerable homology with retroviral reverse transcriptase. Beta senDNA is a 9.8-kbp element, and, of the 5 kbp sequenced thus far, no introns have been noted. Epsilon senDNA is 5.5 kbp, and, while it contains no group II introns, three group I introns were detected.

To determine the relevance of these senDNAs, especially α, with senescence, we have isolated and characterized several long-lived strains of P. anserina. In most, a novel family of small, autonomously replicating elements, derived from the 3′ end of the EcoRI-7 region of the mitochondrial genome, are found. We termed these sMt-1, sMt-2, and sMt-3. DNA sequence analysis has shown that sMt-1 is 368 bp, sMt-2 is 114 bp, and sMt-3 is 67 bp. The sMt-2 and sMt-3 elements overlap and are completely contained within the sMt-1 element. The 5′ and 3′ termini of sMt-1 are unique, as are the 5′ ends of sMt-2 and sMt-3, but the sMt-2 and sMt-3 elements share the same 3′ terminus. Palindromic sequences and direct repeats are present, and their locations suggest a role in the excision process of the sMt DNAs. In early stages of their growth, several of these long-lived strains contain a senDNA but none of the sMt plasmids. Later in vegetative growth, large quantities of the sMt elements are observed. Concomitant with the appearance of these sMt plasmids, gene rearrangements of the mitochondrial genome are common. We argue that the senDNAs and the sMt elements play an antagonistic role in the determination of life span.


Mitochondrial Genome Gene Rearrangement Palindromic Sequence Excision Site Mitochondrial Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belcour, L., and C. Vierny (1986) Variable DNA splicing sites of a mitochondrial intron: Relationship to the senescence process in Podos-pora. EMBO J. 5:609–614.PubMedGoogle Scholar
  2. 2.
    Belcour, L., O. Begel, M.O. Mosse, and C. Vierny (1981) Mitochondrial DNA amplification in senescent cultures of Podospora anserina: Variability between the retained amplified sequences. Curr. Genet. 3:13–21.CrossRefGoogle Scholar
  3. 3.
    Bernardi, G. (1979) The petite mutation in yeast. Trends Biochem. Sci. 4:197–201.CrossRefGoogle Scholar
  4. 4.
    Bertrand, H., B.S.-S. Chang, and A.J.F. Griffiths (1985) Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell 41:877–884.PubMedCrossRefGoogle Scholar
  5. 5.
    Bertrand, H., R.A. Collins, L.L. Stohl, R.R. Goewert, and A.M. Lambowitz (1980) Deletion mutants of Neurospora crassa mitochondrial DNA and their relationship to the “stop-start” growth phenotype. Proc. Natl. Acad. Sci., USA 77:6032–6036.PubMedCrossRefGoogle Scholar
  6. 6.
    Chomyn, A., P. Mariottini, M.W.J. Cleeter, C.I. Ragan, A. Matsuno-Yagi, Y. Hatefi, R.F. Doolittle, and G. Attardi (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory chain NADH dehydrogenase. Nature 314:592–597.PubMedCrossRefGoogle Scholar
  7. 7.
    Cummings, D.J., and R.M. Wright (1983) DNA sequence of the excision sites of a mitochondrial plasmid from senescent Podospora anserina. Nucl. Acids Res. 11:2111–2119.PubMedCrossRefGoogle Scholar
  8. 8.
    Cummings, D.J., L. Belcour, and C. Grandchamp (1979) Mitochondrial DNA from Podospora anserina. I. Isolation and characterization. Mol. Gen. Genet. 171:229–238.PubMedCrossRefGoogle Scholar
  9. 9.
    Cummings, D.J., L. Belcour, and C. Grandchamp (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol. Gen. Genet. 171:239–250.PubMedCrossRefGoogle Scholar
  10. 10.
    Cummings, D.J., J.L. Laping, and P.E. Nolan (1980) Cloning of senescent mitochondrial DNA from Podospora anserina: A beginning. In The Organization and Expression of the Mitochondrial Genome, A.M. Kroon and C. Saccone, eds. Elsevier/North-Holland Biomedical Press, New York, pp. 97–102.Google Scholar
  11. 11.
    Cummings, D.J., I.A. MacNeil, J. Domenico, and E. Matsuura (1985) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence analysis of three unique plasmids. J. Mol. Biol. 185:659–680.PubMedCrossRefGoogle Scholar
  12. 12.
    Davies, R.W., R.B. Waring, J.A. Ray, T.A. Brown, and C. Scazzocchio (1982) Making ends meet: A model for RNA splicing in fungal mitochondria. Nature 300:719–724.PubMedCrossRefGoogle Scholar
  13. 13.
    Diener, T.O. (1983) The viroid—A subviral pathogen. Am. Scientist 71:481–489.Google Scholar
  14. 14.
    Golden, J.W., S.J. Robinson, and R. Haselkorn (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cy-anobacterium Anabaena. Nature 314:419–423.PubMedCrossRefGoogle Scholar
  15. 15.
    Gross, S.R., T.-S. Hsieh, and P.H. Levine (1984) Intramolecular recombination as a source of mitochondrial chromosome heteromorphism in Neurospora. Cell 38:233–239.PubMedCrossRefGoogle Scholar
  16. 16.
    Jamet-Vierny, C., O. Begel, and L. Belcour (1980) Senescence in Podospora anserina: Amplification of a mitochondrial DNA sequence. Cell 21:189–194.PubMedCrossRefGoogle Scholar
  17. 17.
    Jamet-Vierny, C., O. Begel, and L. Belcour (1984) A 20 × 103-base mosaic gene identified on the mitochondrial chromosome of Podospora anserina. Eur. J. Biochem. 143:389–394.PubMedCrossRefGoogle Scholar
  18. 18.
    Koll, F., O. Begel, A.-M. Keller, C. Vierny, and L. Belcour (1984) Ethidium bromide rejuvenation of senescent cultures of Podospora anserina: Loss of senescence-specific DNA and recovery of normal mitochondrial DNA. Curr. Genet. 8:127–134.CrossRefGoogle Scholar
  19. 19.
    Kück, U., B. Kappelhoff, and K. Esser (1985) Despite mtDNA polymorphism the mobile intron (pl DNA) of the COI gene is present in ten different races of Podospora anserina. Curr. Genet. 10:59–67.CrossRefGoogle Scholar
  20. 20.
    Kück, U., U. Stahl, and K. Esser (1981) Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Curr. Genet. 3:151–156.CrossRefGoogle Scholar
  21. 21.
    Klick, U., H.D. Osiewacz, U. Schmidt, B. Kappelhoff, E. Schulte, U. Stahl, and K. Esser (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr. Genet. 9:373–382.CrossRefGoogle Scholar
  22. 22.
    Lazarus, C.M., and H. Kuntzel (1981) Anatomy of amplified mitochondrial DNA in “ragged” mutants of Aspergillus amstelodami: Excision points within protein genes and a common 215 bp segment containing a possible origin of replication. Curr. Genet. 4:99–107.CrossRefGoogle Scholar
  23. 23.
    Mannella, C.A., R.R. Goewert, and A.M. Lambowitz (1979) Characterization of variant Neurospora crassa mitochondrial DNAs which contain tandem reiterations. Cell 18:1197–1207.PubMedCrossRefGoogle Scholar
  24. 24.
    Marcou, D., and J. Schecroun (1959) La senescence chez Podospora an-serina pourrait etre due a des particules cytoplasmique infectantes. C.R. Acad. Sci., Paris 248:280–284.Google Scholar
  25. 25.
    Matsuura, E., J.M. Domenico, and D.J. Cummings (1986) An additional class II intron with homology to reverse transcriptase in rapidly senescing Podospora anserina. Curr. Genet. (in press).Google Scholar
  26. 26.
    Maxam, A.M., and W. Gilbert (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. In Methods in Enzymology, Vol. 65, L. Grossman and K. Moldave, eds. Academic Press, Inc., New York, pp. 499–560.Google Scholar
  27. 27.
    Michel, F., and D.J. Cummings (1985) Analysis of class I intron in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr. Genet. 10:69–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Michel, F., and B. Dujon (1983) Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast-, and nuclear-encoded members. EMBO J. 2:33–38.PubMedGoogle Scholar
  29. 29.
    Michel, F., and B.F. Lang (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptase of retroviruses. Nature 316:641–643.PubMedCrossRefGoogle Scholar
  30. 30.
    Osiewacz, H.D., and K. Esser (1984) The mitochondrial plasmid of Podospora anserina: A mobile intron of a mitochondrial gene. Curr. Genet. 8:299–305.CrossRefGoogle Scholar
  31. 31.
    Rizet, G. (1953) Sur la longevite des souches de Podospora anserina. C.R. Acad. Sci., Paris 237:838–840.Google Scholar
  32. 32.
    Rizet, G. (1957) Les modifications qui conduisent a la senescence chez Podospora anserina sont-elles de nature cytoplasmique. C.R. Acad. Sci., Paris 244:663–665.Google Scholar
  33. 33.
    Schmid, C.W., and W.R. Jelinek (1982) The Alu family of dispersed repetitive sequences. Science 216:1065–1070.PubMedCrossRefGoogle Scholar
  34. 33a.
    Schulte, E., U. Kück, and K. Esser (1986) Rearrangements of the mitochondrial genome correlated with cellular differentiation in the ascomycete Podospora anserina. Presented poster at the International Research Conference on Extrachromosomal Elements in Lower Eukaryotes, University of Illinois, Champaign-Urbana, Illinois, June 1–5, 1986.Google Scholar
  35. 34.
    Sharp, P.A. (1983) Conversion of RNA to DNA in mammals: Alu-like elements and pseudogenes. Nature 301:471–472.PubMedCrossRefGoogle Scholar
  36. 35.
    Slonimski, P.P., and J. Lazowska (1977) Mitochondria 77, W. Bandlow, ed. DeGruyter, Berlin, pp. 39–52.Google Scholar
  37. 36.
    Stahl, U., P.A. Lemke, P. Tudzynski, U. Klick, and K. Esser (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol. Gen. Genet. 162:341–343.PubMedCrossRefGoogle Scholar
  38. 36a.
    Steinhilber, W., and D.J. Cummings (1986) A DNA polymerase activity with characteristics of a reverse transcriptase in Podospora anserina. Curr. Genet. 10:389–392.PubMedCrossRefGoogle Scholar
  39. 37.
    Toh, H., H. Hayashida, and T. Miyata (1983) Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus. Nature 305:827–829.PubMedCrossRefGoogle Scholar
  40. 38.
    Turker, M.S., J.M. Domenico, and D.J. Cummings (1983) A novel family of mitochondrial plasmids associated with longevity mutants of Podospora anserina. Cell (submitted for publication).Google Scholar
  41. 39.
    Vierny, C., A.-M. Keller, O. Begel, and L. Belcour (1982) A sequence of mitochondrial DNA is associated with the onset of senescence in a fungus. Nature 297:157–159.PubMedCrossRefGoogle Scholar
  42. 40.
    Wilde, C.D., C.E. Growther, T.P. Cripe, M.G. Lee, and N.J. Cowan (1982) Evidence that a human 3-tubulin pseudogene is derived from its corresponding mRNA. Nature 297:83–84.PubMedCrossRefGoogle Scholar
  43. 41.
    Wright, R.M., and D.J. Cummings (1983) Integration of mitochondrial gene sequences within the nuclear genome during senescence in a fungus. Nature 301:86–88.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Donald J. Cummings
    • 1
  • Mitchell S. Turker
    • 1
  • Joanne M. Domenico
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations