Microanalysis of Airborne Lead Particulates in an Urban Industrial Environment

  • F. E. Doern
  • D. L. Wotton


Automated SEM-EDX of particulates is a technically viable and economically feasible analytical technique in environmental modelling. A case study involving the microanalysis of lead particulates on aerosol filters from the Weston community of northwest Winnipeg is detailed. The sampling requirements and analytical restrictions inherent in the technique provide a complementary rather than competitive method to conventional chemical analysis techniques. Additional software enhancements to assist in database management are described for use with existing commercial particle analysis hardware/software packages.


Secondary Electron Image Equivalent Spherical Diameter Aerosol Filter Spectral Fingerprint Digital Video Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Cooper and J. G. Watson, Jr., Receptor Oriented Methods of Air Particulate Source Apportionment, J. Air Pollution Control Assoc. 30: 1116 (1980).Google Scholar
  2. 2.
    J. E. Core, J. A. Cooper, P. L. Hanrahan, and W. M. Cox, Particulate Dispersion Model Evaluation: A New Approach Using Receptor Models J. Air Pollution Control Assoc. 32: 1142 (1982).Google Scholar
  3. 3.
    F. E. Doern and D. L. Wotton, Microanalysis of Airborne Lead Particulates in an Urban Industrial Environment, in “Proceed. EMSA 1985”, G.W. Bailey ed., San Francisco Press, San Francisco, 1985.Google Scholar
  4. 4.
    D. C. Jones and D. L. Wotton, Manitoba Environmental Management Division, Terrestrial Standards and Studies, Report 82–3 (1982).Google Scholar
  5. 5.
    G. S. Casuccio, P. B. Janocko, R. J. Lee, J. F. Kelly, S. L. Dattner, and J. S. Mgebroff, The Use of Computer Controlled Scanning Electron Microscopy in Environmental Studies, J. Air Pollution Control Assoc. 33: 937 (1983).Google Scholar
  6. 6.
    D. L. Johnson, Automated Scanning Electron Microscopic Characterization of Particulate Inclusions in Biological Tissues, Scanning Electron Microscopy/1983/III 1211 (1983).Google Scholar
  7. 7.
    G. Fritz, “PRC-Particle Recognition and Characterization”, Tracor Northern, Madison, 1982.Google Scholar
  8. 8.
    D. L. Johnson, B. McIntyre, R. Fortmann, R. K. Stevens, and R. B. Hanna, Particle Analysis - Bulk Analysis, Chemtech 14: 678 (1984).Google Scholar
  9. 9.
    R. J. Lee, J. S. Walker, and J. J. McCarthy, Micro Imaging: A Link Between Microscopy, Image Analysis, and Image Processing, in “Micro-beam Analysis-1985”, J. T. Armstrong, ed., San Francisco Press, San Francisco, 1985.Google Scholar
  10. 10.
    J. Gether and H. M. Seip, Analysis of Air Pollution Data by the Combined Use of Interactive Graphic Presentation and a Clustering Technique, Atmospheric Environment 13: 87 (1979).CrossRefGoogle Scholar
  11. 11.
    W. S. Cleveland and R. McGill, The Many Faces of a Scatterplot, J. Amer. Statistical Assoc. 79: 807 (1984).CrossRefGoogle Scholar
  12. 12.
    B. Raeymaekers, P. Van Espen, and F. Adams, The Morphological Characterization of Particles by Automated Scanning Electron Microscopy, Mikrochimica Acta - 1984 II 437 (1984).Google Scholar
  13. 13.
    S. Borman, Scientific Software, Anal. Chem. 57: 983A (1985).Google Scholar
  14. 14.
    M. F. Delaney, Chemometrics, Anal. Chem. 56: 261R (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. E. Doern
    • 1
  • D. L. Wotton
    • 2
  1. 1.Whiteshell Nuclear Research EstablishmentPinawaCanada
  2. 2.Environmental Management DivisionProvince of ManitobaWinnipegCanada

Personalised recommendations