Immune Reactivities During the Precancer and Early Cancer Periods: Novel Approaches for Immunomodulation

  • Isaac P. Witz
  • Liora Agassy-Cahalon
  • Benjamin Fish
  • Yaron Lidor
  • Yardena Ovadia
  • Haim Pinkas
  • Maya Ran
  • Michael Schickler
  • Nechama Smorodinsky
  • Benjamin Sredni
  • Ilana Yron
Part of the NATO ASI Series book series (NSSA, volume 120)


It is widely accepted that transformation of normal cells is associated with the activation or alteration of cellular oncogenes (1). Transformed cells have also, in many cases, the ability to propagate via an autocrine growth pathway, i.e. to synthesize and utilize their own growth factors (2). Activated one genes and autocrine growth, being intrinsic characteristics of the transformed clone, may not suffice tor such a clone to progress into a fully fledged cancer. The in-vivo progression of the transformed clone would depend, at least so some extent, also on its ability to survive in the milieu provided by the host. Such environmental factors may include angiogenesis (3); interaction with neighbouring tissues and cells (4); supply of growth promoting factors such as hormones (5) and immunological pressure (6). Conceivably, only those transformed cells which are endowed with the capacity to adapt themselves to host-derived environmental factors would be able to progress towards malignancy.


Endometrial Carcinoma T2D4 Cell Precancer Period Mitogenic Response Cellular Oncogene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Bishop, Retroviruses and cancer genes, Adv. Cancer Res., 37: 1–32 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    M. B. Sporn, and A. B. Roberts, Autocrine growth factors and cancer, Nature, 313: 745–747 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Folkman, Tumor Angiogenesis, Adv. Cancer Res., 19: 331–356 (1974).CrossRefGoogle Scholar
  4. 4.
    I. J. Fidler, D. M. Gersten, and I. R. Hart, The biology of cancer invasion and metastasis, Adv. Cancer Res., 28: 149–250 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Kodama, and T. Kodama, Relation between steroid metabolism of the host and genesis of cancers of the breast, uterine, cervix and endometrium, Adv. Cancer Res., 38: 77–119 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    P. C. Doherty, B. B. Knowles, and P. J. Wettstein, Immunological surveillance of tumors in the context of major histocompatibility complex restriction of T cell function, Adv. Cancer Res., 42: 1–65 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Snyderman, and G. J. Cianciolo, Immunosuppressive activity of the retroviral envelope protein P15E and its possible relationship to neoplasia, Immunol. Today, 5: 240–244 (1984).CrossRefGoogle Scholar
  8. 8.
    Stutman, Immunodepression and Malignancy, Adv. Cancer Res., 22: 261–433 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Ehrlich, M. Efrati, A. Bar-Eyal, M. Wolberg, G. Schiby, M. Ran, and I. P. Witz, Natural cellular reactivities mediated by splenocytes from mice bearing three types of primary tumors, Int. J. Cancer, 26: 315–323 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Gorelik, and R. B. Herberman, Inhibition of mouse NK cells by urethan, J. Nat. Cancer Inst., 66: 543–548 (1981).PubMedGoogle Scholar
  11. 11.
    R. Ehrlich, M. Efrati, E. Malatzky, L. Shochat, A. Bar-Eyal, and I. P. Witz, Natural host defence during oncogenesis: NK activity and dimethylbenzanthracene carcinogenesis, Int. J. Cancer, 31: 67–73 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    D. R. Parkinson, R. P. Brightman, and S. D. Waksal, Altered natural killer cell biology in C57BL/6 mice after leukomogenic split-dose irradiation, J. Immunol., 126: 2129–2135 (1981).Google Scholar
  13. 13.
    I. P. Witz, E. Harness, and M. A. Pikovski, Suppressed plaque and rosette formation by spleen cells of mice injected with tumor extracts, in: “Microenvironmental Aspects of Immunity”, B. D. Jankovic, and K. Isakovic, eds., Plenum Publ. Co., New york, 461–468 (1972).Google Scholar
  14. 14.
    I. Kamo, and H. Friedman, Immunosuppression and the role of suppressive factors in cancer, Adv. Cancer Res., 25: 271–321 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    I. P. Witz, M. Yaakubowicz, I. Gelernter, Y. Hochberg, R. Anavi, and M. Ran, Studies on the level of natural antibodies reactive with various tumor cells during urethane carcinogenesis in BALB/c mice, Immunobiol., 166: 131–145 (1984).CrossRefGoogle Scholar
  16. 16.
    M. L. Berman, S. C. Ballon, L. D. Lagasse, and W. G. Watring, Prognosis and treatment of endometrial cancer, Gynaecol., 136: 679–688 (1980).Google Scholar
  17. 17.
    A. L. Sherman, and S. Brown, The precursors of endometrial carcinoma, Amer. J. Obst. Gynaecol., 135: 947–956 (1975).Google Scholar
  18. 18.
    B. E. Henderson, R. K. Ross, M. C Pike, and J. T. Casagrande, Endo-geneous hormones as a major factor in human cancer, Cancer Res., 42: 3232–3239 (1982).PubMedGoogle Scholar
  19. 19.
    S. Chouaib, and D. Fradelizi, The mechanism of inhibition of human IL-2 production, J. Immunol., 129: 2463–2468 (1982).PubMedGoogle Scholar
  20. 20.
    S. Kumagai, I. Scher, and I. Green, Autologous Rosette-forming T cells regulate responses of T cells, J. Clin. Invest., 68: 356–364 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    I. P. Witz, M. Efrati, R. Ehrlich, B. Gonen, L. Kachalom, O. Sagi, E. Sahar, L. Shochat, N. I. Smorodinsky, S. Yaakov, M. Yaakubowicz, and I. Yron, Natural defense and chemical carcinogenesis, in: “Haematology and Blood Transfusion”, Vol. 29, Modern Trends in Human Leukemia VI, Neth, Gallo, Greaves, Janka, eds., Springer-Verlag, Berlin, Heidelberg, New York, 492–497 (1985).Google Scholar
  22. 22.
    K. R. McIntire, R. M. Asofsky, M. Potter, and E. L. Kuff, Macro-globulin producing plasma cell tumor in mice. Identification of a new light chain, Science, 150: 361–363 (1965).CrossRefGoogle Scholar
  23. 23.
    J. Bray, and T. A. McPherson, Fc receptor-bearing blood mononuclear cells in breast cancer patients: a possible marker for tumor burden and prognosis, Clin. Exp. Immunol., 44: 629–637 (1981).PubMedGoogle Scholar
  24. 24.
    M. Ran, and I. P. Witz, FcR derived from without the immune system–A potential escape mechanism for cells propagating in hostile immunological environment, Contr. Gynec. Obstet., 14: 9–14 (1985).Google Scholar
  25. 25.
    I. P. Witz, and M. Ran, Could Fc receptors facilitate the escape of immunogenic premalignant cells from host defence? A hypothesis, Ann. Inst. Pasteur, 136C: 423–428 (1985).CrossRefGoogle Scholar
  26. 26.
    W. H. Fridman, C. Rabourdin-Combe, C. Neauport-Sautes, and K. H. Gisler, Characterization and function of T cell Fc receptor, Immunol. Rev., 56: 51–58 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Daeron, and W. H. Fridman, Towards an isotypic network, Ann. Inst. Pasteur, 136C: 383–387 (1985).Google Scholar
  28. 28.
    C. Neauport-Sautes, C. Rabourdin-Combe, and W. H. Fridman, T cell hybrids bear Fc receptors and secrete suppressor immunoglobulinbinding factor, Nature, 277: 656–668 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Yuasa, S. K. Srivastava, C. Y. Dunn, J. S. Rhim, E. PremkumarReddy, and S. A. Aaronson, Acquisition of transforming properties by alternative point mutations within c-bas/has human protooncogene, Nature, 303: 775–779 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Ran, L. Dux, R. Anavi, N. I. Smorodinsky, and I. P. Witz, A radio-immunoassay with monoclonal antibodies for the detection of antigenic cell-free Fc receptor, J. Immunol. Meth., 68: 275–284 (1984).CrossRefGoogle Scholar
  31. 31.
    J. C. Unkeless, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med., 150: 580–596 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Isaac P. Witz
    • 1
  • Liora Agassy-Cahalon
    • 1
  • Benjamin Fish
    • 2
  • Yaron Lidor
    • 2
  • Yardena Ovadia
    • 2
  • Haim Pinkas
    • 2
  • Maya Ran
    • 1
  • Michael Schickler
    • 1
  • Nechama Smorodinsky
    • 1
  • Benjamin Sredni
    • 3
  • Ilana Yron
    • 1
  1. 1.The Department of Microbiology and the Moise and Frida Eskenasy Institute for Cancer Research, The Goerge S. Wise Faculty of Life SciencesTel Aviv UnivTel AvivIsrael
  2. 2.The Department of Obstetrics and Gynaecology The Beilinson Medical Center, Sakler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.The Department of Life SciencesBar Ilan UniversityRamat GanIsrael

Personalised recommendations