Acquisition of Metastatic Properties via Somatic Cell Fusion: Implications for Tumor Progression in Vivo

  • Patrick De Baetselier
  • Ed Roos
  • Hendrik Verschueren
  • Steven Verhaegen
  • Daniel Dekegel
  • Lea Brys
  • Michael Feldman
Part of the NATO ASI Series book series (NSSA, volume 120)


Somatic hybridization of normal somatic cells with neoplastic cells has been widely adopted as a tool to identify chromosomes or genes involved in the suppression or expression of malignancy. Originally, the neoplastic trait appeared to be dominant (1,2) but now experimental results seem to indicate that fusion of transformed cells with normal cells results in hybrids that are, initially at least, non tumorigenic (3,4). Tumorigenic lines, when they arise, are thought to do so by chromosomal segregation and the loss of specific chromosomes (5,6). This suppression of in vivo growth capacity of tumorigenic lines has often been referred to as “suppression of malignancy” and recently it has been proposed that a group of recessive genes, the socalled “tumor suppressors” or “anti-oncogenes” are implicated in this process (7).


Somatic Hybridization Cell Fusion Mixed Lymphocyte Culture Metastatic Property Premature Chromosome Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Barski, and J. Belehradek, Inheritance of malignancy in somatic cell hybrids, Somatic cell genet., 5: 897 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Barski, S. Sorieul, and F. Cornetert, “Hybrid” type cells in combined cultures of two different mammalian cell strains, J. Nat. Cancer Inst., 26: 1297 (1961).Google Scholar
  3. 3.
    E. J. Stanbridge, Suppression of malignancy in human cells, Nature, 260: 17 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    E. P. Evans, M. D. Burtenshaw, B. B. Brown, R. Henrion, and H. Harris, The analysis of malignancy by cell fusion. IX. Re-examination and clarification of the cytogenetic problem, J. Cell. Sci., 26: 113 (1982).Google Scholar
  5. 5.
    H. Harris, Cell fusion and the analysis of malignancy, Proc. R. Soc. Lond. B, 179: 1 (1971).CrossRefGoogle Scholar
  6. 6.
    E. J. Stanbridge, R. R. Flandermeyer, D. W. Daniels, and W. A. Nelson-Rees, Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids, Somatic cell genet., 7: 699 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Klein, and E. Klein, Evolution of tumors and the impact of molecular oncology, Nature, 315: 190 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Wiener, E. M. Fenyo, G. Klein, and H. Harris, Fusion of tumour cells with host cells, Nature (New Biology), 238: 155 (1972).CrossRefGoogle Scholar
  9. 9.
    R. Ber, F. Wiener, and E. M. Fenyo, Proof of in vivo fusion of murine tumor cells with host cells by universal fusers, J. Nat. Cancer Inst., 60: 931 (1978).PubMedGoogle Scholar
  10. 10.
    N. B. Atkin, Premature chromosome condensation in carcinoma of the bladder: presumptive evidence for fusion of normal and malignant cells, Cytogenet. Cell genet., 23: 217 (1979).CrossRefGoogle Scholar
  11. 11.
    G. Poste, and I. J. Fidler, The pathogenesis of cancer metastasis, Nature, 283: 139 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    D. M. Goldenberg, R. A. Pavia, and M. C. Tsao, In vivo hybridization of human tumour and normal hamster cells, Nature, 250: 649 (1974).Google Scholar
  13. 13.
    P. De Baetselier, E. Gorelik, Z. Esschar, Y. Ron, S. Katsav, M. Feldman, and S. Segal, Hybridization between plasmacytoma cells and B lymphocytes confers metastatic properties on a non-metastatic tumor, J. Nat. Cancer Inst., 67: 1079 (1981).PubMedGoogle Scholar
  14. 14.
    P. De Baetselier, E. Roos, L. Brys, L. Remels, and M. Feldman, Generation of invasive and metastatic variants of a non-metastatic T-cell lymphoma by in vivo fusion with normal host cells, Int.J. Cancer, 34: 731 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    R. S. Kerbel, E. A. Lagarde, J. W. Dennis, and T. P. Donaghue, Spontaneous fusion between normal host and tumor cells: Possible contribution to tumor progression and metastases studied with a lectin resistant mutant tumor, Mol. Cell. Biol., 3: 523 (1983).Google Scholar
  16. 16.
    L. Larizza, V. Schirrmacher, L. Graf, E. Pflüger, M. Peres-Martinel, and M. Stöhr, Suggestive evidence that the highly metastatic variant Esb of the T-cell lymphoma Eb is derived from spontaneous. fusion with a host macrophage, Int. J. Cancer, 34: 695 (1984).CrossRefGoogle Scholar
  17. 17.
    P. De Baetselier, E. Roos, L. Brys, L. Remels, M. Gobert, D. Dekegel, S. Segal, and M. Feldman, Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells, Cancer Metastasis reviews, 3: 5 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Roos, and I. V. Van de Pavert, Antigen-activated T lymphocytes infiltrate hepatocyte cultures in a manner comparable to liver-colonizing lymphosarcoma cells, Clin. Exp. Metast., 1: 173 (1983).CrossRefGoogle Scholar
  19. 19.
    Y. Naparstek, I. R. Cohen, Z. Fuks, and I. Vlodaysky, Activated T lymphocytes produce a matric-degrading heparan sulphate endoglycosidase, Nature, 310: 241 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Naparstek, I. R. Cohen, Z. Fuks, and I. Vlodaysky, Activated T lymphocytes produce a matric-degrading heparan sulphate endoglycosidase, Nature, 310: 241 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    I. A. Ramshaw, S. Carlsen, H. C. Wang, and P. Badenoch-Jones, The use of cell fusion to analyse factors involved in tumour cell metastases, Int. J. Cancer, 32: 471 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Sidebottom, and S. R. Clark, Cell fusion segregates progressive growth from metastasis, Br. J. Cancer, 47: 399 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    V. Schirrmacher, P. Altevogt, and K. Bosslet, Spontaneous phenotypic shifts from low to high metastatic capacity, in: “Biochemical and Biological Markers of Neoplastic Transformation”, P. Chandra, ed., Plenum Press, New York, London, pp. 121 (1983).Google Scholar
  24. 24.
    D. M. Williams, C. D. Scott, and T. M. Beck, Premature chromosome condensation in human leukemia, Blood, 47: 687 (1976).PubMedGoogle Scholar
  25. 25.
    G. Hovacs, and A. Georgh, Spontaneous cell fusion in human malignancies: possible mechanism leading to heterogeneity, Lancet, 2: 350 (1985).Google Scholar
  26. 26.
    L. Larizza, and V. Schirrmacher, Somatic cell fusion as a source of genetic rearrangement leading to metastatic variants, Cancer Metastasis reviews, 3: 193 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Ron, P. De Baetselier, and S. Segal, Involvement of the spleen in murine B cell differentiation, Eur. J. Immunol., 11: 94 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Ron, P. De Baetselier, and S. Segal, Involvement of the spleen in the control of the immunogenic and phagocytic function of thio-glycolate-induoed macrophages, Eur. J. Immunol., 11: 608 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Slavin, S. Morecki, and L. Weiss, The role of the spleen in tumor growth: kinetics of the murine B cell leukemia (BCL1), J. Immunol., 124: 586 (1980).PubMedGoogle Scholar
  30. 30.
    P. L. Witte, and R. Ber, Improved efficiency of hybridoma ascites production by intrasplenic inoculation in mice, J. Nat. Cancer Inst., 70: 575 (1983).PubMedGoogle Scholar
  31. 31.
    V. Schirrmacher, Shifts in tumor cell phenotypes induced by signals from the microenvironment. Relevance for the immunobiology of cancer metastasis, Immunobiology, 157: 85 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Patrick De Baetselier
    • 1
  • Ed Roos
    • 2
  • Hendrik Verschueren
    • 3
  • Steven Verhaegen
    • 1
  • Daniel Dekegel
    • 2
  • Lea Brys
    • 1
  • Michael Feldman
    • 4
  1. 1.Instituut voor Moleculaire BiologieVrije UniversiteitBrusselBelgium
  2. 2.Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Pasteur Instituut van BrabantBrusselsBelgium
  4. 4.Department of Cell BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations