Bovine Leukosis Virus as a Model for Human Retroviruses

  • Claudine Bruck
  • Richard Kettmann
  • Daniel Portetelle
  • Dominique Couez
  • Arsene Burny
Part of the NATO ASI Series book series (NSSA, volume 120)


The most common neoplasm of the bovine species is, by far, lymphoid leukosis. Enzootic bovine leukosis (EBL) has been recognized as a neoplasm of infectious origin tor half a century. The agent was identified as a retrovirus of exogenous origin (1). This virus, named bovine leukemia virus, was found to be unrelated to any known retrovirus family, until the discovery of the human T cell lymphotropic viruses (HTLV) in 1980 (2). BLV, HTLV-I and HTLV-II share a number of biochemical, biological and immunological features which suggest that the three leukemia viruses belong to a new family of retroviruses. According to the same criteria, a more distant relationship to HTLV-III was found. Recently, primate viruses related to the HTLV viruses (STLV-I and III) were identified (3–5). HTLV-III was shown to belong to the lentivirus family by its extensive sequence homology to the ovine VISNA virus (6). BLV, the HTLV and STLV leukemia viruses, HTLV-III, STLV-III and other lentiviruses were shown to form a unique group of retroviruses characterized by the presence of a tat gene (tat = trans-acting transcriptional activation) in their genome (7,8). The tat gene product is believed to play a major role in the induction of the transformed phenotype by BLV and HTLV-I and II (7).


Bovine Leukemia Virus Envelope Glycoprotein Gp51 Bovine Leukemia Virus Infection Persistent Lymphocytosis Enzootic Bovine Leukosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kettmann, D. Protetelle, M. Mammerickx, Y. Cleuter, D. Dekegel, M. Galoux, J. Ghysdael, A. Burny, and H. Chantrenne, Bovine Leukemia Virus: an exogenous RNA Oncogenic Virus, Proc. Nat. Acad. Sci. USA, 73: 1014–1018 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    B. J. Poiesz, F. W. Ruscetti, A. F. Gazdar, P. A. Bunn, J. D. Minna, and R. C. Gallo, Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T cell lymphoma, Proc. Nat. Acad. Sci. USA, 77: 7415–7419 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    P. J. Kanki, R. Kurth, W. Becker, G. Dressman, M. F. McLane, and M. Essex, Antibodies to Simian T-lymphotropic retroviruses type III in African Green Monkeys and recognition of STLV-III viral proteins by AIDS and related sera, Lancet, I: 1330–1332 (1985).Google Scholar
  4. 4.
    P. J. Kanki, M. F. M.Lane, N. W. King, N. L. Letvin, R. D. Hunt, P. Sehgal, M. D. Daniel, R. C. Desrosiers, and M. Essex, Serologic identification and characterization of a macaque T-lymphotropic retrovirus closely related to HTLV-III, Science, 228: 1199–1201 (1985).Google Scholar
  5. 5.
    N. L. Letvin, M. D. Daniel, P. K. Sehgal, R. C. Desrosiers, R. D. Hunt, L. M. Waldron, J. J. Mac Key, D. K. Schmidt, L.V. Chalifoux, and N. W. King, Induction of AIDS-Like Disease in Macaque Monkeys with T-Cell Tropic Retrovirus STLV-III, Science, 230: 71–73 (1985)PubMedCrossRefGoogle Scholar
  6. 6.
    D. Sonigo, M. Alizon, K. Staskus, D. Klatzmann, S. Cole, O. Danos, E. Retzel, P. Tidlais, A. Haase, and S. Wain-Hobson, Nucleotide Sequence of the Visna Lentivirus: Relationship to the AIDS virus, Cell, 42: 369–382 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    J. G. Sodroski, C. A. Rosen, and W. A. Haseltine, Trans-acting transcriptional activation of the long terminal repeat of human T-lymphotropic viruses in infected cells, Science, 225: 381–385 (1985).CrossRefGoogle Scholar
  8. 8.
    F. Wong-Staal, and R. C. Gallo, Human T-lymphotropic retroviruses, Nature, 317: 395–403 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M. J. Van der Maaten, and J. M. Miller, Susceptibility of cattle to BLV infection by various routes of exposure, in: “Advances in Comparative Leukemia Research”, P. Bentvenitzen, ed., Elsevier, Amsterdam (1978).Google Scholar
  10. 10.
    D. Protetelle, M. Mammerickx, F. Bex, A. Burny, Y. Cleuter, D. Dekegel, J. Ghysdael, R. Kettmann, and H. Chantrenne, Purification of BLV pg70 and p24. Detection by radioimmunoassay of antibodies directed against these antigens, in: “Bovine Leukosis: Various Methods of Molecular Virology”, A. Burny, ed., CEC, Luxembourg, p. 131–152 (1977).Google Scholar
  11. 11.
    J. F. Ferrer, R. R. Marshak, D. A. Abt, and S. J. Kenyon, Persistent lymphocytosis in cattle: its cause, nature and relation to lymphosarcoma, Ann. Rech. Vet., 9: 851–857 (1978).PubMedGoogle Scholar
  12. 12.
    R. Kettmann, G. Marbaix, Y. Cleuter, D. Portetelle, M. Mammerickx, and A. Burny, Genomic integration of BLV provirus and lack of viral expression in the target cells of cattle with different responses to BLV infection, Leukemia Res., 4: 509–519 (1980).CrossRefGoogle Scholar
  13. 13.
    P. Gupta, S. V. S. Kashmiri, and J. F. Ferrer, Transcriptional control of the bovine leukemia virus genome: role and characterization of a non-immunoglobulin plasma protein from BLV-infected cattle, J. Virol., 50: 267–270 (1984).PubMedGoogle Scholar
  14. 14.
    A. Burny, C. Bruck, H. Chantrenne, Y. Cleuter, D. Dekegel, J. Ghysdael, R. Kettmann, M. Leclercq, J. Leunen, M. Mammerickx, and D. Portetelle, Bovine Leukemia Virus: Molecular Biology and Epidemiology, in: “Viral Oncology”, G. Klein, ed., Raven Press, New York (1980).Google Scholar
  15. 15.
    A. L. Parodi, M. Mialot, F. Crespeau, D. Levy, H. Salmon, G. Nogues, and R. Girard-Marchand, Attempt for a new cytological and cytoimmunological classification of bovine malignant lymphoma (BML) (Lymphosarcoma), Current Topics in Vet. Med. Anim. Sci., 15: 561–572 (1982).Google Scholar
  16. 16.
    D. Gregoire, D. Couez, J. Deschamps, S. Heuertz, M. C. Hors-CaylaGoogle Scholar
  17. J. Szpirer, C. Szpirer, A. Burny, G. Huez, and R. Kettmann, Different bovine leukemia virus-induced tumors harbor the provirus in different chromosomes, J. Virol., 50: 275–279 (1984).PubMedGoogle Scholar
  18. 17.
    W. C. D. Hare, and R. A. McFeeley, Chromosome abnormalities in lymphatic leukemia in cattle, Nature, 209: 108–110 (1966).PubMedCrossRefGoogle Scholar
  19. 18.
    W. C. D. Hare, R. A. McFeeley, D. A. Abt, and J. R. Feierman, Chromosomal studies in bovine lymphosarcoma, J. Nat. Cancer Inst., 33: 105–118 (1964).PubMedGoogle Scholar
  20. 19.
    W. C. D. Hare, T. J. Yang, and R. A. McFeeley, A survey of chromosome findings in 47 cases of bovine lymphosarcome (leukemia), J. Nat. Cancer Inst., 38: 383–392 (1967).PubMedGoogle Scholar
  21. 20.
    R. Kettmann, Y. Cleuter, D. Gregoire, and A. Burny, Role of the 3’ Long Open Reading Frame Region of Bovine Leukemia Virus in the Maintenance of Cell Transformation, J. Virol., 54: 899–901 (1985).PubMedGoogle Scholar
  22. 21.
    C. A. Rosen, J.G. Sosroki, R. Kettmann, A. Burny, and W.A. Haseltine, Transactivation of the bovine leukemia virus long terminal repeat in BLV-infected cells, Science, 227: 320–322 (1985).PubMedCrossRefGoogle Scholar
  23. 22.
    B. J. Poiesz, F. W. Ruscetti, J. W. Mier, A. M. Woods, and R. C. Gallo, T-cell lines established from human T lymphocytic neoplasias by direct response to T-cell growth factors, Proc. Nat. Acad. Sci. USA, 77: 6815–6819 (1980).PubMedCrossRefGoogle Scholar
  24. 23.
    L. H. Hartwell, and D. Smith, Altered fidelity of mitotic chromosome transmission in cell cycle mutants of Saccharomyces cerevisiae, Genetics, 110: 381–395 (1985).PubMedGoogle Scholar
  25. 24.
    L. H. Hartwell, Communication at the “Oncogene Symposium”, Boston, May 13, 1985.Google Scholar
  26. 25.
    F. Gilbert, Chromosome abnormality, gene amplification and tumor progression, Progr. Clin. Biol. Res., 175: 151–159 (1985).Google Scholar
  27. 26.
    J. N. Hurley, ShuMan Fu, H. G. Kunkel, R. S. K. Chaganti, and J. German, Chromosome abnormalities of leukemic B lymphocytes in chronic lymphocytic leukemia, Nature, 283: 76–78 (1980).PubMedCrossRefGoogle Scholar
  28. 27.
    N. Heisterkamp, J. R. Stephenson, J. Groffen, P. F. Hansen, A. de Klein, C. R. Bartram, and G. Grosveld, Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukemia, Nature, 306: 239–242 (1983).PubMedCrossRefGoogle Scholar
  29. 28.
    R. Taub, I. Kirsch, C. Morton, G. Lenoir, D. Swan, S. Tronick, S. Aaronson, and P. Leder, Translocation of the c-myc gene into the immunoglobulin heavy chain locus of human Burkitt lymphoma and murine plasmacytoma cells, Proc. Nat. Acad. Sci. USA, 79: 7837–7841 (1982).PubMedCrossRefGoogle Scholar
  30. 29a.
    Y.Tsujimoto, J. Yunis, L. Onorato-Showe, J. Erikson, P. C. Nowell, and C. Croce, Molecular Cloning of the chromosomal break-point of B cell lymphomas and leukemias with the t (11;14) chromosome translocation, Science, 224: 1403–1406 (1984).CrossRefGoogle Scholar
  31. 29b.
    Y.Tsujimoto, L. R. Finger, J. Yunis, P. C. Nowell, and C. Croce, Cloning of the chromosome break-point of neoplastic B cells with the (14;18) chromosome translocation. Science, 226: 1097–1099 (1984).CrossRefGoogle Scholar
  32. 30.
    M. Mammerickx, D. Portetelle, A. Burny, and J. Leunen, Zentralblt. Veterinärmed., B27: 291–303 (1980).CrossRefGoogle Scholar
  33. 31.
    C. Bruck, S. Mathot, D. Portetelle, C. Berte, J. D. Franssen, P. Herion, and A. Burny, Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51, Virology, 122: 342–352 (1982).PubMedCrossRefGoogle Scholar
  34. 32.
    C. Bruck, D. Portetelle, A. Burny, and J. Zavada, Topographical analysis of monoclonal antibodies of BLV gp51 epitopes involved in viral functions, Virology, 122: 353–362 (1982).PubMedCrossRefGoogle Scholar
  35. 33.
    N. R. Rice, R. M. Stephens, D. Couez, J. Deschamps, R. Kettmann, A. Burny, and R. V. Gilden, The nucleotide sequence of the env gene and post-env region of BLV, Virology, 138: 82–93 (1984).PubMedCrossRefGoogle Scholar
  36. 34.
    C. Bruck, N. Rensonnet, D. Portetelle, Y. Cleuter, M. Mammerickx, A. Burny, R. Mamoun, B. Guillemain, M. Van der Maaten, and J. Ghysdael, Biologically active epitopes of BLV gp51: their dependence on protein glycosylation and genetic variability, Virology, 136: 20–32 (1984).PubMedCrossRefGoogle Scholar
  37. 35.
    D. Couez, Manuscript in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Claudine Bruck
    • 1
  • Richard Kettmann
    • 1
  • Daniel Portetelle
    • 1
  • Dominique Couez
    • 1
  • Arsene Burny
    • 1
  1. 1.Dept. of Molecular BiologyUniversity of BrusselsRhode-Saint-GeneseBelgium

Personalised recommendations