Oncogenes in Development, Neoplasia, and Evolution

  • Fritz Anders
  • Annerose Anders
  • Manfred Schartl
  • Thomas Gronau
  • Wolfgang Lüke
  • Carl-Rudolf Schmidt
  • Angelika Barnekow
Part of the NATO ASI Series book series (NSSA, volume 120)


The concept of genes that code for neoplastic transformation, called “oncogenes” today, originates from two sources: from virology and from animal genetics. The virological source can be traced back to the year 1911 when Peyton Rous discovered the virus that causes sarcoma in chickens. It took, however, about sixty years until evidence was brought about that the cancer determinants located in the genome of this virus and of related viruses (retroviruses) are genes (Huebner and Todaro, 1969; Bentvelzen, 1972). The source that originates from animal genetics can be traced back to the year 1928 when Myron Gordon, Georg Häussler, and Curt Kosswig indepently discovered that the F1 hybrids between certain domesticated ornamental breeds of the Central American fish species Xiphophorus maculatus (platyfish) and Xiphophorus helleri (swordtail) spontaneously develop melanoma that is inherited in the hybrid generations like the phenotype of any normal Mendelian gene located in the genome of the fish. Both, Rous’ sarcoma virus (RSV) and Xiphophorus fish represent up to date highly suitable models for research on oncogenes.


Cellular Oncogene Regulatory Gene System Oncogene Amplification Murine Sarcoma Virus Melanoma Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, M.R., 1979, On the nature of genetic change as an underlying cause for the origin of neoplasms, in: Antiviral Mechanisms in the Control of Neoplasia“, P. Chandra, ed., Plenum Press, New York, London.Google Scholar
  2. Ahuja, M.R., and Anders, F., 1977, Cancer as a problem of gene regulation, in: “Recent Advances in cancer Research: Cellbiology, Molecular Biology, and Tumor Virology, 1” R. C. Gallo, ed., CRC Press, Cleveland, Ohio.Google Scholar
  3. Ahuja, M.R., Lepper, K., and Anders, F., 1979, Sexchromosome aberrations involving loss and translocation of tumor-inducing loci in Xiphophorus, Experientia, 35: 28.PubMedCrossRefGoogle Scholar
  4. Anders, A., and Anders, F., 1978, Etiology of cancer as studied in the platyfish-swordtail system, Biochim. Biophys. Acta, 516: 61.PubMedGoogle Scholar
  5. Anders, A., Anders, F., and Klinke, K., 1973, Regulation of gene expression in the Gordon-Kosswig melanoma system. I. The distribution of the controlling genes in the genome of the xiphophorine fish, Platypoecilus maculatus and Platypoecilus variatus. H. The arrangement of chromatophore determining loci and regulating elements in the sexchromosomes of xiphophorine fish, Platypoecilus maculatus and Platypoecilus variatus, in: “Genetics and Mutagenesis of Fish”, J.H. Schröder, ed., Springer-Verlag, Heidelberg.Google Scholar
  6. Anders, A., Anders, F., Lake, W., Henze, M., Schartl, M., and Schmidt, C.-R., 1985a, Onkogene in Evolution, Entwicklung u. Tumorbildung, in: Sonderforschungsbereich 103, Zellenergetik und Zeildifferenzierung, Ergebnisbericht 1983–1985, Philipps-Universität Marburg.Google Scholar
  7. Anders, A., Anders, F., and Pursglove, D.L., 1971, X ray-induced mutations of the genetically-determined melanoma system of xiphophorine fish, Experientia, 27: 931.PubMedCrossRefGoogle Scholar
  8. Anders, A., Dess, G., Nishimura, S., and Kersten, H., 1985b, A molecular approach to the study of malignancy and benignancy in melanoma of Xiphophorus, in: “Pigment Cell 1985, Biological, Molecular and Clinical Aspects of Pigmentation”, J. Bagnara, S. N. Klaus, E. Paul, and M. Schartl, eds., University of Tokyo Press, Tokyo.Google Scholar
  9. Anders, F., 1967, Tumour formation in platyfish-swordtail hybrids as a problem of gene regulation, Experientia, 23: 1.PubMedCrossRefGoogle Scholar
  10. Anders, F., 1968, Genetische Faktoren bei der Entstehung von Neoplasmen, Zbl. Vet. Med., 15: 29.CrossRefGoogle Scholar
  11. Anders, F., 1981, Erb-und Umweltfaktoren im Ursachengefüge des neoplastischen Wachstums nach Studien an Xiphophorus, Klin. Wochenschr., 59: 943.PubMedCrossRefGoogle Scholar
  12. Anders, F., 1983, The biology of an oncogene, based upon studies on neoplasia in Xiphophorus, in: “Haematology and Blood Transfusion Vol. 28, Modern Trends in Human Leukemia V”, R. Neth, R. C. Gallo, M. F. Greaves, M. A. S. Moore, and K. Winkler, eds., Springer-Verlag, Berlin, Heidelberg.Google Scholar
  13. Anders, F., Gronau, T., Schartl, M., Barnekow, A., Jaenel-Dess, G., and Anders, A., 1986, Cellular oncogenes as ubiquitous genomic constituents in the animal kingdom and as fundamentals in melanoma formation, in: “Proceedings of the First International Conference on Skin Melanoma”, N. Cascinelli, ed., in press.Google Scholar
  14. Anders, F., and Klinke, K., 1966, über Gen-Dosis, Gen-Dosiseffekt und Gen-Dosiskompensation, Verh. Dtsch. Zool. Anz., 30 (Suppl.):391.Google Scholar
  15. Anders, F., and Schartl, M., 1984, Wertung von Parametern für die taxonomische Klassifizierung im Genus Xiphophorus (Teleostei: Poeciliidae), Verh. Dtsch. Ges. Zool. Anz., 77: 254.Google Scholar
  16. Anders, F., Schartl, M., and Barnekow, A., 1984b, Xiphophorus as an in vivo model for studies on oncogenes, in: “Use of Small Fish Species in Carcinogenicity Testing”, K. L. Hoover, ed., Natl. Cancer Inst. Monogr. 65, National Cancer Institute, Bethesda, Maryland.Google Scholar
  17. Anders, F., Schartl, M., Barnekow, A., and Anders, A., 1984a, Xiphophorus as an in vivo model for studies on normal and defective control of oncogenes, Adv. Cancer Res., 42: 191.Google Scholar
  18. Anders, F., Schartl, M., Barnekow, A., Luke, W., Jaenel-Dess, G., and Anders, A., 1985, The genes that carcinogens act upon, in: “Modern Trends in Human Leukemia, IV”, R. Neth, R. C. Gallo, M. F. Greaves, and G. Janka, eds., Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  19. Anders, F., Schartl, M., and Scholl, E., 1981, Evaluation of environmental and hereditary factors in carcinogenesis, based on studies in Xiphophorus, in: “Phyletic Approaches to Cancer”, C. D. Dawe, J. C. Harshbarger, S. Kondo, T. Sugimura, and S. Takayama, eds., Japan Scientific Societies Press, Tokyo.Google Scholar
  20. Anders, F., Vester, F., Klinke, K., and Schumacher, H., 1961, Genetisch bedingte Tumoren und der Gehalt an freien Aminosäuren bei lebend-gebärenden Zahnkarpfen (Poeciliidae), Experientia, 17: 549.PubMedCrossRefGoogle Scholar
  21. Barnekow, A., and Schartl, M., 1984, Cellular src gene product detected in the freshwater sponge Spongilla lacustris, Mol. Cell. Biol., 4: 1179.PubMedGoogle Scholar
  22. Barnekow, A., Schartl, M., Anders, F., and Bauer, H., 1982, Identification of a fish protein associated with kinase activity and related to the Rous sarcoma virus transforming protein, Cancer Res., 42: 4222.PubMedGoogle Scholar
  23. Bentvelzen, P., 1972, Hereditary infections with mammary tumor viruses in mice, in: “RNA Viruses and Host Genome in Oncogenesis”, P. Emmelot and P. Bentvelzen, eds., North-Holland Publ., Amsterdam.Google Scholar
  24. Bishop, J. M., 1985, Retroviruses and cancer genes, in: “Genetics, Cell Differentiation, and Cancer”, P. A. Marks, ed., Academic Press, Inc., New York.Google Scholar
  25. Dawe, C.D., and Harshbarger, J.C., 1969, “Neoplasms and Related Disorders of Invertebrate and Lower Vertebrate Animals”, Natl. Cancer Inst. Monogr. 31, Bethesda.Google Scholar
  26. Dawe, C.D., Harshbarger, J.C., Kondo, S., Sugimura, T., and Takayama, S., 1981, “Phyletic Approaches to Cancer”, Japan Scientific Societies Press, Tokyo.Google Scholar
  27. Flavell, N., 1984, Role of reverse transcription in the generation of extra-chromosomal copia mobile genetic elements, Nature, 310: 514.PubMedCrossRefGoogle Scholar
  28. Garfinkel, D.J., Boeke, J.D., and Fink, G.R., 1985, Ty element transposition: Reverse transcriptase and virus-like particles, Cell, 42: 507.PubMedCrossRefGoogle Scholar
  29. Gerard, G., Loewenstein, P., and Green, M., 1980, Characterization of a DNA-polymerase activity in cultured human melanoma cells that copies poly(rCm)p(dG), J. Biol. Chem., 255: 1015.PubMedGoogle Scholar
  30. Gordon, M., 1928, Pigment inheritance in the Mexican killifish: Interaction of factors in Platypoecilus maculatus, J. Hered., 19: 253.Google Scholar
  31. Gronau, T., 1986, Onkogene und Onkogenamplifikation bei der Tumorbildung von Xiphophorus, Thesis, Univ. Giessen.Google Scholar
  32. Häussler, G., 1928, Über Melanombildungen bei Bastarden von Xiphophorus helleri und Platypoecilus maculatus var. Rubra, Klin. Wochenschr. 7:1561Google Scholar
  33. Huebner, R.J., and Todaro, G.J., 1969, Oncogenes of RNA tumor viruses as determinants of cancer, Proc. Natl. Acad. Sci. USA, 64: 1087.PubMedCrossRefGoogle Scholar
  34. Kaiser, H.E., 1981, Phylogeny and paleopathology of animal and human neoplasms, in: “Neoplasms - Comparative Pathology of Growth in Animals, Plants and Man”, H. E. Kaiser, ed., Williams and Wilkins Baltimore, London.Google Scholar
  35. Kollinger, G., and Siegmund, E., 1981, Meiosis of species and inter-specific hybrids of Xiphophorus, Verh. Dtsch. Zool. Ges., 1981: 206.Google Scholar
  36. Kosswig, C., 1928, Ober Kreuzungen zwischen den Teleostiern Xiphophorus helleri und Platypoecilus maculatus, Z. indukt. Abstammungsund Vererbungslehre, 47: 150.CrossRefGoogle Scholar
  37. Kraybill, H.F., Dawe, C.J., Harshbarger, J.C., and Tardiff, R.G., 1977, “Aquatic Pollutants and Biological Effects with Emphasis on Neoplasia”, Ann. N. Y. Acad. Sci., 298.Google Scholar
  38. Krieg, K., 1973, Zur Bedeutung wirbelloser Tierspezies für die Geschwulstforschung, Biol. Zentralbl., 92: 617.Google Scholar
  39. Kuff, E.L., Feenstra, A., Lueders, K., Smith, L., Hawley, R., Hozumi, N., and Shulman, M., 1983; Intracisternal A-particle genes as movable elements in the mouse genome, Proc. Natl. Acad. Sci. USA, 80:1992.Google Scholar
  40. Lu, K., 1986, Isolation and sequencing of the pol-related gene from Xiphophorus, Thesis, Univ. Giessen.Google Scholar
  41. Lüke, W., 1985, RNA-abhängige DNA-Polymerase-Aktivität im Xiphophorus Tumor System, Thesis, Univ. Giessen.Google Scholar
  42. Lüke, W., and Anders, F., 1986, RNA-dependent DNA polymerase activity in normal and neoplastic tissues of Xiphophorus, Biochim. Biophys. Acta, submitted.Google Scholar
  43. Mellor, J., Malim, M.H., Gull, K., Tuite, M.F., McCready, S., Dibbayawan, T., Kingsman, S.M., and Kingsman, A.J., 1985, Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast, Nature, 318: 583.PubMedCrossRefGoogle Scholar
  44. Meyer, M.K., Wischnath, L., and Foerster, W., 1985, “Lebendgebärende Zierfische, Arten der Welt”, Mergus-Verlag, Melle.Google Scholar
  45. Paulsen, N., 1986, Homoeoboxen in Xiphophorus, Thesis, Univ. Giessen.Google Scholar
  46. Peter, R.U., 1986, Vergleichend-anatomische Untersuchungen über die extrakutanen Pigmentierungsmuster der Poeciliiden (Pisces, Teleostei), Thesis, Univ. Giessen.Google Scholar
  47. Prakash, K., and Seligy, V.L., 1985, Oncogene related sequences in fungi: Linkage of some to actin, Biochem. Biophys. Res. Commun., 133: 293.PubMedCrossRefGoogle Scholar
  48. Pursglove, D.L., Anders, A., Doll, G., and Anders, F., 1971, Effects of X-irradiation on the genetically-determined melanoma system of xiphophorine fish, Experientia, 27: 695.PubMedCrossRefGoogle Scholar
  49. Radda, A.C., 1980, Synopsis der Gattung Xiphophorus HECKEL, Aquaria, 27: 39Google Scholar
  50. Raulf, F., and Schartl, M., 1985, Differential expression of protooncogenes during embryogenesis of Xiphophorus, Europ. J. Cell Biol. (Suppl.), 39: 27.Google Scholar
  51. Rosen, D.E., 1979, Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography, Bull. Am. Mus. Natl. Hist., 162: 267.Google Scholar
  52. Rous, P. 1911, A sarcoma transmitted by an agent separable from the tumor cell, Proc. N. York Path. Soc., XI: 8.Google Scholar
  53. Schartl, A., Schartl, M., and Anders, F., 1982, Promotion and regression of neoplasia by testosterone-promoted cell differentiation in Xiphophorus and Girardinus, in: “Cocarcinogenesis and Biological Effects of Tumor Promoters, Carcinogenesis - a Comprehensive Survey, 7”, E. Hecker, N.E. Fusenig, W. Kunz, F. Marks, and H. W. Thielmann, eds., Raven Press, New York.Google Scholar
  54. Schartl, M., and Barnekow, A., 1982, The expression in eukaryotes of a tyrosine kinase which is reactive with c-src Y pp60 antibodies, Differentiation, 23: 108.CrossRefGoogle Scholar
  55. Schartl, M., and Barnekow, A., 1984, Differential expression of the cellular src gene during vertebrate development, Dev. Biol., 105: 415.PubMedCrossRefGoogle Scholar
  56. Schartl, M., Barnekow, A., Bauer, H., and Anders, F., 1982, Correlation of inheritance and expression between a tumor gene and the cellular homolog of the Rous Sarcoma Virus-transforming gene in Xiphophorus, Cancer Res., 42: 4222.PubMedGoogle Scholar
  57. Schartl, M. Mäueler, W., Raulf, F., and Barnekow, A., 1985a, Differential expression of cellular oncogenes in normal and neoplastic tissues of vertebrates, Europ. J. Cell Biol. (Suppl.), 39: 30.Google Scholar
  58. Schartl, M., Schmidt, C.-R., Anders, A., and Barnekow, A., 1985b, Elevated expression of the cellular src gene in tumors of differing etiologies in Xiphophorus, Int. J. Cancer, 36: 199.PubMedCrossRefGoogle Scholar
  59. Schmidt, C.-R., Herbert, H., and Anders, A., 1986, Selective tumor formation in sensitive tester strains of Xiphophorus indicating initiating and/or promoting activities of carcinogens, in preparation.Google Scholar
  60. Schimke, R.T., 1984, Gene amplification, drug resistance, and cancer, Cancer Res., 44: 1735.PubMedGoogle Scholar
  61. Scholl, A., and Anders, F., 1973, Electrophoretic variation of enzyme proteins in platyfish and swordtail (Poeciliidae; Teleostei), Archiv für Genetik, 46: 121.PubMedGoogle Scholar
  62. Schwab, M., 1980, Genome organization in Xiphophorus (Poeciliidae; Teleostei), Mol. Gen. Genet., 188: 410.CrossRefGoogle Scholar
  63. Schwab, M., 1982, How can altered differentiation induced by 12–0-tetradecanoylphorbol-l3-acetate be related to tumor promotion, in: “Cocarcinogenesis and Biological Effects of Tumor Promoters, Carcinogenesis - a Comprehensive Survey, 7”, E. Hecker, N. E. Fusenig, W. Kunz, F. Marks, and H. W. Thielmann, eds., Raven Press, New York.Google Scholar
  64. Schwab, M., Abdo, S., Ahuja, M.R., Kollinger, G., Anders, A., Anders, F., and Frese, K., 1978a, Genetics of susceptibility in the platyfish/swordtail tumor system to develop fibrosarcoma and rhabdomyosarcoma following treatment with N-methyl-N-nitrosourea (MNU), Z. Krebsforsch., 91: 301.CrossRefGoogle Scholar
  65. Schwab, M., Haas, J., Abdo, S., Ahuja, M.R., Kollinger, G., Anders, A., and Anders, F., 1978b, Genetic basis of susceptibility for development of neoplasms following treatment with N-methyl-Nnitrosourea (MNU) or X-rays in the platyfish-swordtail system, Experientia, 34: 780.PubMedCrossRefGoogle Scholar
  66. Schwab, M., Kollinger, G., Haas, J., Ahuja, M.R., Abdo, S., Anders, A., and Anders, F., 1979, Genetic basis of susceptibility for neuroblastoma following treatment with N-methyl-N-nitrosourea and X-rays in Xiphophorus, Cancer Res., 39: 519.PubMedGoogle Scholar
  67. Sharp, P., 1983, Conversion of RNA to DNA in mammals: Alu-like elements and pseudogenes, Nature, 301: 471.PubMedCrossRefGoogle Scholar
  68. Shiba, S., and Saigo, K., 1983, Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster, Nature, 302:119.Google Scholar
  69. Shilo, B.Z., and Weinberg, R.A., 1981, DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 78: 6789.PubMedCrossRefGoogle Scholar
  70. Simon, M.A., Kornberg, T.B., and Bishop, J.M., 1983, Three loci related to the src oncogene and tyrosine-specific protein kinase activity in Drosophila, Nature, 302: 837.PubMedCrossRefGoogle Scholar
  71. Slamon, D., and Cline, M.J., 1984, Expression of cellular oncogenes during embryonic and fetal development of mouse, Proc. Natl. Acad. Sci. USA, 81: 7141.PubMedCrossRefGoogle Scholar
  72. Spector, D.H., Varmus, H.E., and Bishop, J.M., 1978, Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates, Proc. Natl. Acad. Sci. USA, 75: 4102.PubMedCrossRefGoogle Scholar
  73. Stehelin; D., Varmus, H.E., and Bishop, J.M., 1976, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA, Nature, 260: 170.PubMedCrossRefGoogle Scholar
  74. Trosko, J.E., 1986, personal communication.Google Scholar
  75. Vielkind, J., Haas-Andela, H., Vielkind, U., and Anders, F., 1982, The introduction of a specific pigment cell type by total genomic DNA injected into the neural crest region of fish embryos of the genus Xiphophorus, Mol. Gen. Genet., 185: 379.PubMedCrossRefGoogle Scholar
  76. Vielkind, U., 1976, Genetic control of cell differentiation in platyfishswordtail melanomas, J. Exp. Zool., 196: 197.PubMedCrossRefGoogle Scholar
  77. Zechel, Ch., 1986, Subklonierung und Sequenzierung von c-erb von Xiphophorus, Thesis, Univ. Giessen.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Fritz Anders
    • 1
  • Annerose Anders
    • 1
  • Manfred Schartl
    • 1
    • 3
  • Thomas Gronau
    • 1
  • Wolfgang Lüke
    • 1
  • Carl-Rudolf Schmidt
    • 1
  • Angelika Barnekow
    • 2
  1. 1.Genetisches InstitutJustus-Liebig-Universität GiessenGiessenBundesrepublik Deutschland
  2. 2.Institut für Virologie (FB Humanmedizin)Justus-Liebig- Universität GiessenBundesrepublik Deutschland
  3. 3.Max-Planck-Institut für BiochemieMartinsriedBundesrepublik Deutschland

Personalised recommendations