DNA-Protein Crosslinking of Platinum Coordination Complex in Living Cells: Implication to Evaluate the Cytotoxic Effects of Chemotherapeutic Agents

  • L. S. Hnilica
  • R. Olinski
  • Z. M. Banjar
  • W. N. Schmidt
  • R. C. Briggs
Part of the NATO ASI Series book series (NSSA, volume 120)


The first report by Rosenberg et al. (1) that, out of several platinum coordination complexes, the cis-diamminedichloroplatinum (II), (or cis-DDP) was most effective in inhibiting the growth of sarcoma 180 in mice has initiated intensive research into its mode of biological action, especially since its isomer, the trans-DDP, is essentially inactive (2,3). Because both isomers have been shown to bind DNA, it must be the stereospecificity of this binding which sets them apart as antitumor agents. Indeed, the elegant experiments of Lippard and his associates (4), who developed antibodies specific for intrastrand crosslinks of two adjacent guanine residues, showed that only cis-DDP was capabable of binding to the DNA in this fashion. The trans-isomer did not produce detectable crosslinks of this kind. These findings, supported by x-ray crystallography (5), together with the reports of others (6), suggest that the intrastrand DNA crosslinking by cis-DDP may be responsible tor its antitumor activity.


HeLa Cell Nuclear Matrix HeLa Nucleus Alkaline Elution Intrastrand Cross Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Rosenberg, L. Van Camp, J. E. Trosko, and V. H. Mansour, Platinum compounds: a new class of potent antitumor agents, Nature, 222: 385 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    J. M. Hill, and R. J. Speer, Organo-platinum complexes as antitumor agents (review), Anticancer Res., 2: 173 (1982).PubMedGoogle Scholar
  3. 3.
    A. C. M. Plooy, and P. H. M. Lohman, Platinum compounds with antitumor activity, Toxicology, 17: 169 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    S. J. Lippard, H. M. Ushay, C. M. Merkel, and M. C. Poirier, Use of antibodies to probe the stereochemistry of antitumor platinum drug binding do deoxyribonucleic acid, Biochemistry, 22: 5165 (1983).CrossRefGoogle Scholar
  5. 5.
    S. E. Sherman, D. Gibson, A. H. J. Wang, and S. J. Lippard, X-Ray structure of the major adduct of the anticancer drug Cisplatin with DNA: cis-[Pt(NH3)2(apGpG)], Science, 230: 412 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    A. M. J. Fichtinger-Schepman, J. L. van der Veer, J.H.J. den Hartog, P. H. M. Lohman, and J. Reedijk, Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification and quantitation, Biochemistry, 24: 707 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    L. A. Zwelling, T. Anderson, and K. W. Kohn, DNA-protein and DNA interstrand cross-linking by cis-and trans-platinum(II) diamminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity, Cancer Res., 39: 365 (1979).Google Scholar
  8. 8.
    S. J. Lippard, and J. D. Hoeschele, Binding of cis-and trans-dichloro-diammineplatinum(II) to the nucleosome core, Proc. Nat. Acad. Sci. USA, 76: 6091 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Filipski, K. W. Kohn, and W. M. Bonner, Differential crosslinking of histones and non-histones in nuclei by cis-Pt(II), FEBS Lett., 152: 105 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    Z. M. Banjar, L. S. Hnilica, R. C. Briggs, J. Stein, and G. Stein, Cis-and trans-diamminedichloroplatinum(II)-mediated cross-linking of chromosomal non-histone proteins to DNA in HeLa cells, Biochemistry, 23: 1921 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    K. W. Kohn, L. C. Erickson, R. A. G. Ewig, and C. A. Friedman, Fractionation of DNA from mammalian cells by alkaline elution, Biochemistry, 15: 4629 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Towbin, T. Staehelin, and J. Gordon, Electorphoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Nat. Acad. Sci. USA, 76: 1350 (1979).CrossRefGoogle Scholar
  13. 13.
    W. F. Glass, R. C. Briggs, and L. S. Hnilica, Identification of tissue-specific nuclear antigens transferred to nitrocellulose from polyacrylamide gels, Science, 211: 70 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    F. P. Guengerich, P. Wang, and N. K. Davidson, Estimation of isozymes of microsomal cytochrome P-450 in rats, rabbits and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Biochemistry, 21: 1698 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Borun, and G. S. Stein, The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. II. The kinetics of residual protein synthesis and transport, J. Cell Biol., 52: 308 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    W. S. Ward, W. N. Schmidt, C. A. Schmidt, and L. S. Hnilica, Cross-linking of the Novikoff hepatoma cytokeratin filaments, Biochemistry, 24: 4429 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Stryjecka-Zimmer, W. N. Schmidt, R. C. Briggs, and L. S. Hnilica, Immunological specificity of Novikoff hepatoma chromatin: isolation of three antigenic proteins, Int. J. Biochem., 14: 591 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    W. N. Schmidt, K. B. McKusick, C. A. Schmidt, L. H. Hoffman, and L. S. Hnilica, Nuclear matrix antigens in azo-dye induced primary rat hepatomas, Cancer Res., 44: 5291 (1984).PubMedGoogle Scholar
  19. 19.
    W. N. Schmidt, M. Stryjecka-Zimmer, W. F. Glass, R. C. Briggs, and L. S. Hnilica, Tissue specificity and distribution of Novikoff hepatoma antigenic proteins p39, p49 and p56, J. Biol. Chem., 256: 8117 (1981).PubMedGoogle Scholar
  20. 20.
    G. Babbiani, T. Kapanci, P. Barrazone, and W. W. Franke: Immunochemical identification of intermediate filaments in human neoplastic cells: a diagnostic aid for the surgical pathologist, Am. J. Pathol., 104: 206 (1981).Google Scholar
  21. 21.
    E. Lazarides, Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem., 51: 219 (1982).CrossRefGoogle Scholar
  22. 22.
    M. Osborn, M. Altmannsberger, E. Debus, and K. Weber; Conventional and monoclonal antibodies to intermediate filament proteins in human tumor diagnosis, in: “Cancer Cells: The transformed Phenotype”, A. J. Levine, G. F. Vande Woude, W. C. Topp, and J. D. Watson, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • L. S. Hnilica
    • 1
  • R. Olinski
    • 1
  • Z. M. Banjar
    • 1
  • W. N. Schmidt
    • 1
  • R. C. Briggs
    • 1
  1. 1.Departments of Biochemistry and Pathology, the A.B. Hancock, Jr. Memorial Laboratory of the Vanderbilt University Cancer Center and the Center in Molecular ToxicologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations