T-Cell Growth Factor (Interleukin-2)

  • Suresh K. Arya
  • M. G. Sarngadharan
Part of the NATO ASI Series book series (NSSA, volume 120)


Human peripheral blood lymphocytes (PBL) undergo a blast transformation when cultured with the plant lectin phytohemagglutinin (PHA) (1). These lymphocytes go through one or two cycles of cell division but could not be maintained in culture. The conditioned media from these lymphocyte cultures were found to have a variety of protein factors that affected growth and differentiation of human cells of many lineages (2). One of these factors was identified to specifically support the growth of activated human T-lymphocytes and was termed T-lymphocyte growth factor or T-cell growth factor (TCGF) (3,4). It is now more commonly referred to as interleukin-2 (IL-2). Detailed studies have been reported on the characteristics of the cells that produce IL-2, accessory cells and factors involved in its induction, and on the target cell that responds to IL-2 (5–9). IL-2 has been purified to homogeneity from normal peripheral blood lymphocytes and also from gibbon and human leukemic cell lines (10–13). cDNAs encoding this lymphokine have been isolated and sequenced (10,14,15) and the IL-2 gene characterized (16–17). The IL-2 gene has been localized to chromosome 4q (18).


Jurkat Cell Acquire Immune Deficiency Syndrome Acquire Immune Deficiency Syndrome Patient Acquire Immune Deficiency Syndrome Virus Killer Cell Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Nowell, Phytohemagglutinin induces DNA synthesis in leucocyte cultures. Cancer Res., 20: 462–467 (1960).PubMedGoogle Scholar
  2. 2.
    J.J. Oppenheim, M.B. Mizel, and M.S. Meltzer, Biological properties of lymphocyte-derived and macrophage-derived mitogenic “amplification” factors, in: “The Biology of Lymphokines” (S. Cohen, E. Pick, and J.J. Oppenheim, Eds.), Academic Press, New York, pp. 399–402 (1979).Google Scholar
  3. 3.
    D.A. Morgan, F.W. Ruscetti, and R.C. Gallo, Selection in vitro growth of T-lymphocytes from normal human bone marrows. Science, 193: 1007–1008 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    F.W. Ruscetti, D.A. Morgan, and R.C. Gallo, Functional and morphologic characterization of human T cells continously grown in vitro. J. Immunol., 119: 131–138 (1977).PubMedGoogle Scholar
  5. 5.
    F.W. Ruscetti, and R.C. Gallo, Human T-lymphocyte growth factor: Regulation of growth and function of T lymphocytes. Blood, 57: 379–394 (1981).PubMedGoogle Scholar
  6. 6.
    K.A. Smith, T-Cell growth factor. Immunol. Rev., 51: 337–356 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    M.H. Schrier, N.N. Iscove, R. Tees, L. Aardon, and H. von Boehmer, Clones of killer and helper T cells: Growth factor requirements, specificity, and retention of function in long term culture. Immunol. Rev., 51: 314–336 (1980).Google Scholar
  8. 8.
    H. von Boehmer, and W. Haas, H-2 restricted cytolytic and noncytolytic T-cell clones. Isolation, specificity and functional analysis. Immunol. Rev., 54: 27–56 (1981).CrossRefGoogle Scholar
  9. 9.
    B. Sredni, and R.H. Schwartz, Antigen-specific T-cell clones: Methodology, specificity, MHC restriction and alloreactivity. Immunol. Rev., 54: 198–225 (1981).CrossRefGoogle Scholar
  10. 10.
    S.C. Clark, S.K. Arya, F. Wong-Staal, M. Matsumoto-Kobayashi, R.M. Kay, R.J. Kaufman, E.L. Brown, C. Shoemaker, T. Copeland, S. Oroszlan, K. Smith, M.G. Sarngadharan, S.G. Lindner, and R.C. Gallo, Human T-cell growth factor: Partial amino acid sequence, cDNA cloning, and organization and expression in normal and leukemic cells. Proc. Natl. Acad. Sci. USA, 81: 2543–2547 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    R.C. Gallo, S.K. Arya, S.G. Lindner, F. Wong-Staal, and M.G. Sarngadharan, Human T-cell growth factor, growth of human neoplastic T cells, and human T-cell leukemia-lymphoma virus, in: “Thymic Hormones and Lymphokines” (A.L. Goldstein, Ed.) New York, Plenum Publishing Corporation, pp. 1–17 (1984).Google Scholar
  12. 12.
    L.E. Henderson, J.F. Hewetson, R.F. Hopkins, R.C. Sowder, R.H. Neubauer, and H. Rabin, A rapid, large-scale purification procedure for gibbon interleukin-2. J. Immunol., 131: 810–815 (1983).PubMedGoogle Scholar
  13. 13.
    R.J. Robb, R.M. Kutny, and V. Chowdhry, Purification and partial sequence of human T-cell growth factor. Proc. Natl. Acad. Sci. USA, 80: 5990–5994 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Taniguchi, H. Matsui, T. Fujita, C. Takaoka, N. Kashima, R. Yoshimoto, and J. Hamuro, Structure and function of a cloned cDNA for human interleukin-2. Nature, 301: 306–310 (1983).Google Scholar
  15. 15.
    R. Devos, G. Placetinck, H. Cheroutre, G. Simons, W. Degrave, J. Tavernier, E. Remaut, and W. Fiers, Molecular cloning of human interleukin-2 cDNA and its expression in E. coli. Nucleic Acids Res., 11: 4307–4322 (1983).CrossRefGoogle Scholar
  16. 16.
    T. Fujita, C. Takaoka, H. Matsui, and T. Taniguchi, Structure of the human interleukin-2 gene. Proc. Natl. Acad. Sci. USA, 80: 7437–7441 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    N. Holbrook, K.A. Smith, A.J. Fornace, C. Comean, R.L. Wiskocil, and G.R. Crabtree, T-cell growth factor: Complete nucleotide sequence and the organization of the gene in normal and malignant cells. Proc. Natl. Acad. Sci. USA, 81: 1634–1638 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    L.J. Siegel, M.E. Harper, F. Wong-Staal, R.C. Gallo, W.G. Nash, and S.J. O’Brien, Gene for T-cell growth factor: Localization on human chromosome 4q and feline chromosome 81. Science, 223: 175–178 (1984)Google Scholar
  19. 19.
    R.J. Robb, A. Munck, and K.A. Smith, T-cell growth factor receptors: Quantitation, specificity, and biological relevance. J. Exp. Med., 154: 1455–1474 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    W.C. Green, and R.J. Robb, Receptors for T-cell growth factor: Structure, Function, and expression on normal and neoplastic cells. in: “Contemporary Topics in Molecular Immunology” (S.Gillis, and F.P. Inman, Eds.), Plenum Publishing Corp., New York, Vol. 10, pp. 1–34 (1985).Google Scholar
  21. 21.
    S. Gillis, and K.A. Smith, Long-term culture of tumor-specific cytotoxic T-cells. Nature, 268: 154 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    B.J. Poiesz, F.W. Ruscetti, J.W. Mier, A.M. Woods, and R.C. Gallo, T-cell lines established from human T-lymphocytic neoplasias by direct response to T-cell growth factor. Proc. Natl. Acad. Sci. USA, 77: 6815–6819 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    B.J. Poiesz, F.W. Ruscetti, A.F. Gazdar, P.A. Bunn, J.D. Minna, and R.C. Gallo, Detection and isolation of type-C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA, 77: 7415–7419 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    S.L. Swain, G. Dennert, J.F. Warner, and R.W. Dutton, Culture supernatants of a stimulated T-cell line have helper activity that acts synergistically with interleukin-2 in the response of B cell to antigen. Proc. Natl. Acad. Sci. USA, 71: 2517–2521 (1981).CrossRefGoogle Scholar
  25. 25.
    H.J. Leibson, P. Marrick, and J.W. Kappler, B-cell helper factors. I. Requirement for both interleukin-2 and another 40,000 mol. wt. factor. J. Exp. Med., 154: 1681–1693 (1981).Google Scholar
  26. 26.
    J.D. Watson, S. Gillis, J. Marbrook, D. Mochizuki, and K. Smith, Biochemical characterization of lymphocyte regulatory molecules. I. Purification of a class of mucine lymphokines. J. Exp. Med., 150: 849–856 (1979).Google Scholar
  27. 27.
    A. Granelli-Piperno, J.D. Vassalli, and E. Reich, Purification of murine T-cell growth factor. A lymphocyte mitogen with helper activity. J. Exp. Med., 154: 422–431 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    K. Takatsu, K. Tanaka, A. Tominaga, Y. Kumahara, and T. Hamaoka, Antigen-induced T-cell replacing factor (TRF). III. Establishment of T-cell hybrid clone continuously releasing TRF. J. Immunol., 125: 2646–2653 (1980).PubMedGoogle Scholar
  29. 29.
    W.E. Paul, B. Sredni, and R.H. Schwartz, Long-term growth and cloning of nontransformed lymphocytes. Nature, 294: 697–699 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Gillis, and J. Watson, Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin-2 producing human T cell line. J. Exp. Med., 152: 1709–1719 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    M.G. Sarngadharan, R.C. Ting, and R.C. Gallo, Methods for production and purification of human T-cell growth factor, in: “Methods for Serum-Free Culture of Neuronal and Lymphoid Cells”, (D.W. Barnes, D.A. Sirbasku, and G.H. Sato, Eds.) Alan R. Liss, Inc., New York, pp. 127–144 (1984).Google Scholar
  32. 32.
    R.J. Robb, R.M. Kutny, M. Panico, H.R. Morris, and V. Chowdhry, Amino acid sequence and post translational modification of human interleukin 2. Proc. Natl. Acad. Sci. USA, 81: 6486–6490 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    T.D. Copeland, K.A. Smith, and S. Oroszlan, Characterization of immunoaffinity-purified human T-cell growth factor from Jurkat cells, in: “Thymic Hormones and Lymphokines” (A.L. Goldstein, Ed.) Plenum Publishing Corp., New York, pp. 181–189 (1984).Google Scholar
  34. 34.
    A. Wang, S.-D. Lu, and D.F. Mark, Site specific mutagenesis of the human interleukin-2 gene: Structure-function analysis of the cysteine residues. Science, 224: 1431–1433 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    R.J. Robb, and K.A. Smith, Heterogeneity of human T cell growth factor(s) due to variable glycosylation. Mol. Immunol., 18: 1087–1094 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    J.J. Farrar, W.R. Benjamin, M.L. Hilfiker, M. Howard, W.L. Farrar, and J. Fuller-Farrar, The biochemistry, biology and role of interleukin-2 in the induction of cytotoxic T cell and antibody forming B cell responses. Immunol. Rev., 63: 129–166 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    M.T. Lotze, E.A. Grimm, A. Mazumdar, J.L. Strausser, and S.A. Rosenberg, In vitro growth of cytotoxic T lymphocytes: Lysis of fresh and cultured autologous tumor by lymphocytes cultured in T-cell growth factor. Cancer Res., 41: 4420–4425 (1981).PubMedGoogle Scholar
  38. 38.
    E.A. Grimm, D.J. Wilson, and S.A. Rosenburg, Lymphokine-activated killer cell phenomenon. II. The precursor phenotype is serologically distinct from peripheral blood T cells, memory CTL, and NK cells. J. Exp. Med., 157: 884–897 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    E.A. Grimm, R.J. Robb, J.A. Roth, M. Neckers, L.B. Lachman, D.J. Wilson, and S.A. Rosenberg, Lymphocyte activated killer cell phenomenon: Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J. Exp. Med., 158: 1356–1361 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Howard, L. Matis, T.R. Malek, E. Shevach, W. Kell, D. Cohen, K. Nakanishi, and W.E. Paul, Interleukin-2 induces antigen-reactive T cell lines to secrete BCGF-1. J. Exp. Med., 158: 2024–2039 (1983)PubMedCrossRefGoogle Scholar
  41. 41.
    T.A. Waldmann, C.K. Goldman, R.J. Robb, J.M. Depper, W.J. Leonard, S.O. Sharrow, K.F. Bongiovanni, S.J. Korsmeyer, and W.C. Greene, Expression of interleukin-2 receptors on activated human B cells. J. Exp. Med., 160: 1450–1466 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    G.D. Bonnard, D. Yosaka, and D. Jacobson, Ligand-activated T-cell growth factor induced proliferation: Absorption of T-cell growth factor by activated T cells. J. Immunol., 123: 2704–2708 (1979).PubMedGoogle Scholar
  43. 43.
    A. Coutinho, E.L. Larsson, K.O. Gronvik, and J. Anderson, Studies on T lymphocyte activation. II. The target cell for concanavalin A induced growth factors. Eur. J. Immunol., 9: 587–592 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    J.E. Gootenberg, F.W. Ruscetti, J.W. Mier, A. Gazdar, and R.C. Gallo, Human T-cell lymphoma and leukemia cell lines produce and respond to T-cell growth factor. J. Exp. Med., 154: 1403–1417 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    T. Uchiyama, S. Broder, and T.A. Waldmann, A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. J. Immunol., 126: 1393–1397 (1981).PubMedGoogle Scholar
  46. 46.
    W.J. Leonard, J.M. Depper, T. Uchiyama, K.A. Smith, T.A. Waldmann, and W.C. Greene, A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor. Partial characterization of the receptor. Nature, 300: 267–269 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    R.J. Robb, W.C. Greene, and C.M. Rusk, Low and high affinity cellular receptors for interleukin-2. Implications for the level of Tac antigen. J. Exp. Med., 160, 1126–1146 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    J.M. Depper, W.J. Leonard, M. Kronke, T.A. Waldmann, and W.C. Greene, Augmented T-cell growth factor receptor expression in HTLV-infected human leukemic T cells. J. Immunol., 133: 1691–1695 (1984).PubMedGoogle Scholar
  49. 49.
    T.A. Waldmann, W.C. Greene, P.S. Sarin, C. Saxinger, D.W. Blayney, W.A. Blattner, C.K. Goldman, K. Bongiovanni, S. Sharrow, J.M. Depper, W. Leonard, T. Uchiyama, and R.C. Gallo, Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sezary leukemia, and their distinction using anti-Tac. J. Clin. Invest., 73: 1711–1718 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Popovic, G. Lange-Wantzin, P.S. Sarin, D. Mann, and R.C. Gallo, Transformation of human umbilical cord blood T cells by human T-cell leukemia/lymphoma virus. Proc. Natl. Acad. Sci. USA, 80: 5402–5406 (1983).PubMedCrossRefGoogle Scholar
  51. 51.
    I. Miyoshi, I. Kubonishi, S. Yoshimoto, T. Akagi, Y. Ohtsuki, Y. Shireishi, K. Nagato, and Y. Hinuma, Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukemic T cells. Nature, 294: 770–771 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    M. Yoshida, I. Miyoshi, and Y. Hinuma, Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc. Natl. Acad. Sci. USA, 79: 2031–2035 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    R.C. Gallo, Human T-cell leukaemia-lymphoma virus and T-cell malignancies in adults, in: “Cancer Surveys” (J. Wyke, and R. Weiss, Eds.), Oxford University Press, Oxford, Vol. 3, pp. 113–159 (1984).Google Scholar
  54. 54.
    M. Popovic, P.S. Sarin, M. Robert-Guroff, V.S. Kalyanaraman, D. Mann, J. Minowada, and R.C. Gallo, Isolation and transmission of human retrovirus (human T-cell leukemia virus). Science, 219: 856–859 (1983).PubMedCrossRefGoogle Scholar
  55. 55.
    P.D. Markham, S.Z. Salahuddin, V.S. Kalyanaraman, M. Popovic, P. Sarin, and R.C. Gallo, Infection and transformation of fresh human umbilical cord blood cells by multiple sources of human T-cell leukemia-lymphoma virus (HTLV). Int. J. Cancer, 31: 413–420 (1983).PubMedCrossRefGoogle Scholar
  56. 56.
    V.S. Kalyanaraman, M.G. Sarngadharan, M. Robert-Guroff, I. Miyoshi, D. Blayney, D. Golde, and R.C. Gallo, A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science, 218: 571–573 (1982).PubMedCrossRefGoogle Scholar
  57. 57.
    M. Popovic, M.G. Sarngadharan, E. Read, and R.C. Gallo, Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science, 224: 497–500 (1984).PubMedCrossRefGoogle Scholar
  58. 58.
    R.C. Gallo, S.Z. Salahuddin, M. Popovic, G.M. Shearer, M. Kaplan, B. F. Haynes, T.J. Palker, R. Redfield, J. Oleske, B. Safai, G. White, P. Foster, and P.D. Markham, Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science, 224: 500–503 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    J. Schuepbach, M. Popovic, R.V. Gilden, M.A. Gonda, M.G. Sarngadharan, and R.C. Gallo, Serological analysis of a subgroup of human T-lymphotropic retroviruses (HTLV-III) associated with AIDS. Science, 224: 503–505 (1984).CrossRefGoogle Scholar
  60. 60.
    M.G. Sarngadharan, M. Popovic, L. Buch, J. Schuepbach, and R.C. Gallo, Antibodies reactive with human T-lymphotropic retroviruses (HTLV-III) in the serum of patients with AIDS. Science, 224: 506–508 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    S.K. Arya, R.C. Gallo, B.H. Hahn, G.M. Shaw, M. Popovic, S.Z. Salahuddin, and F. Wong-Staal, Homology of genomes of AIDS-associated virus with genomes of human T-cell leukemia viruses. Science, 225: 927–930 (1984).PubMedCrossRefGoogle Scholar
  62. 62.
    L. Ratner, W. Haseltine, R. Patarca, K.J. Livak, B. Starcich, S.F. Josephs, E.R. Doran, J.A. Rafalski, E.A. Whitehorn, K. Baumeister, L. Ivanoff, S.R. Petteway, M.L. Pearson, J.A. Lautenberger, T.S. Papas, J. Ghrayeb, N.T. Chang, R.C. Gallo, and F. Wong-Staal, Complete nucleotide sequence of the AIDS virus, HTLV-III, Nature, 313: 277–284 (1985).PubMedCrossRefGoogle Scholar
  63. 63.
    B. Starcich, L. Ratner, S.F. Josephs, T. Okamoto, R.C. Gallo, and F. Wong-Staal, Characterization of long terminal repeat sequences of HTLV-III. Science, 227: 538–540 (1985).PubMedCrossRefGoogle Scholar
  64. 64.
    S.K. Arya, F. Wong-Staal, and R.C. Gallo, T-cell growth factor gene: Lack of expression in human T-cell leukemia-lymphoma virus-infected cells. Science, 223: 1086–1087 (1984).PubMedCrossRefGoogle Scholar
  65. 65.
    S.K. Arya, F. Wong-Staal, and R.C. Gallo, Dexamethasone-mediated inmhibition of human T cell growth factor and y-interferon messenger RNA. J. Immunol., 133: 273–276 (1984).PubMedGoogle Scholar
  66. 66.
    D.L. Mann, M. Popovic, C. Murray, C. Neuland, D.M. Strong, P. Sarin, R.C. Gallo, and W.A. Blattner, Cell surface antigen expression in newborn cord blood lymphocytes infected with HTLV. J. Immunol., 131: 2021–2024 (1983).PubMedGoogle Scholar
  67. 67.
    S.K. Arya, and R.C. Gallo, Transcriptional modulation of human T-cell grwoth factor gene by phorbol ester and interleukin-1. Biochemistry 23: 6685–6690 (1984).PubMedCrossRefGoogle Scholar
  68. 68.
    F. Barre-Sinoussi, J.-C. Chermann, F. Rey, M.T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Brun-Vezinet, C. Rozioux, W. Rozenbaum, and L. Montagnier, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science, 220: 868–871 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    S.Z. Salahuddin, P.D. Markham, M. Popovic, M.G. Sarngadharan, S. Orndorff, A. Fladagar, A. Patel, J. Gold, and R.C. Gallo, Isolation of infectious human T-cell leukemia/lymphotropic virus type III (HTLV-III) from patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex (ARC) and from healthy carriers: A study of risk groups and tissue sources. Proc. Natl. Acad. Sci. USA 82: 5530–5534 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    B.H. Hahn, G.M. Shaw, S.K. Arya, M. Popovic, R.C. Gallo, and F. Wong-Staal, Molecular cloning and characterization of the HTLV-III virus associated with AIDS. Nature, 312: 166–169 (1984).PubMedCrossRefGoogle Scholar
  71. 71.
    M.A. Muesing, D.H. Smith, C.D.Cabradilla, C.V. Benton, L.A. Lasky, and D.J. Capon, Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature, 313: 450–458 (1985).PubMedCrossRefGoogle Scholar
  72. 72.
    S. Wain-Hobson, P. Sonigo, O. Danos, S. Cole, and M. Alizon, Nucleotide Sequence of the AIDS virus, LAV. Cell, 40: 9–17 (1985).PubMedCrossRefGoogle Scholar
  73. 73.
    R. Sanchez-Pescador, M.D. Power, P.J. Barr, K.S. Steimer, M.M. Stempien, S.L. Brown-Shimer, W.W. Gee, A. Renard, A. Randolph, J.A. Levy, D. Dina, and P.A. Luciw, Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science, 227: 484–492 (1985).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Sodroski, C. Rosen, F. Wong-Staal, S.Z. Salahuddin, M. Popovic, S. Arya, R.C. Gallo, and W.A. Haseltine, Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science, 227: 171–173 (1985).PubMedCrossRefGoogle Scholar
  75. 75.
    S.K. Arya, G. Chan, S.F. Josephs, and F. Wong-Staal, Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science, 229: 69–73 (1985).PubMedCrossRefGoogle Scholar
  76. 76.
    S.K. Arya, and R.C. Gallo, Three novel genes of human T-lymphotropic virus type III: Immune reactivity of their products with sera from acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA, 83: 2209–2213 (1986).PubMedCrossRefGoogle Scholar
  77. 77.
    S.K. Arya, and R.C. Gallo, Human T-cell growth factor (interleukin-2) and y-interferon genes: Expression in human T-lymphotropic virus type III- and type I-infected cells. Proc. Natl. Acad. Sci. USA, 82: 8691–8695 (1985).PubMedCrossRefGoogle Scholar
  78. 78.
    D. Zagury, M. Fouchard, J.-C. Vol, A. Cattan, J. Leibowitch, M. Feldman, S. Sarin, and R.C. Gallo, Detection of infectious HTLV-III/LAV virus in cell-free plasma from AIDS patients. Lancet, 11: 505–506 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Suresh K. Arya
    • 1
    • 2
  • M. G. Sarngadharan
    • 1
    • 2
  1. 1.Laboratory of Tumor Cell BiologyNational Cancer Institute National Institutes of HealthBethesdaUSA
  2. 2.Department of Cell BiologyBionetics Research, Inc.RockvilleUSA

Personalised recommendations